Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
video_cls = pipeline(model="mohamedsaeed823/VideoMAEF-finetuned-ARSL-diverse-dataset") | |
phrase_map = { | |
'Alhamdulillah': "الحمد لله", | |
'Good bye': "مع السلامة", | |
'Good evening': "مساء الخير", | |
'Good morning': "صباح الخير", | |
'How are you': "ايه الاخبار", | |
'I am pleased to meet you': "فرصة سعيدة", | |
'I am fine': "انا كويس", | |
'I am sorry': "انا اسف", | |
'Not bad': "مش وحش ", | |
'Salam aleikum': "السلام عليكم", | |
'Sorry': "لو سمحت", | |
'Thanks': "شكرا" | |
} | |
def classify_video(video_path): | |
try: | |
result=video_cls(video_path,top_k=3,frame_sampling_rate=6) # try to sample a frame every 6 seconds for better video understanding if the video is long enough | |
except Exception as e: | |
result=video_cls(video_path,top_k=3,frame_sampling_rate=3) # if the video is not long enough sample every 3 seconds | |
# Extract the top 3 label and their scores from the classification results | |
top_label = [phrase_map[result[0]['label']], phrase_map[result[1]['label']], phrase_map[result[2]['label']]] | |
top_label_confidence = [result[0]['score'], result[1]['score'], result[2]['score']] | |
return dict(zip(top_label, top_label_confidence)) | |
title = "Arabic Sign Language Recognition using VideoMAE" | |
examples = ["examples/alhamdulellah.mp4", | |
"examples/forsa sa3eda.mp4", | |
"examples/ma3a el salama.mp4",] | |
demo = gr.Interface(fn=classify_video,title=title, inputs=gr.Video(), outputs=gr.Label(num_top_classes=3), examples=examples) | |
if __name__ == "__main__": | |
demo.launch(show_api=True) |