Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PyPDF2
|
2 |
+
import chromadb
|
3 |
+
import streamlit as st
|
4 |
+
from langchain_openai import OpenAI
|
5 |
+
|
6 |
+
# Function to extract text from PDF
|
7 |
+
def extract_text_from_pdf(pdf_path):
|
8 |
+
text = ""
|
9 |
+
with open(pdf_path, "rb") as file:
|
10 |
+
pdf_reader = PyPDF2.PdfFileReader(file)
|
11 |
+
for page_num in range(pdf_reader.numPages):
|
12 |
+
text += pdf_reader.getPage(page_num).extractText()
|
13 |
+
return text
|
14 |
+
|
15 |
+
# Function to create chunks of text
|
16 |
+
def create_text_chunks(text, chunk_size=1000, overlap_size=100):
|
17 |
+
chunks = []
|
18 |
+
for i in range(0, len(text), chunk_size - overlap_size):
|
19 |
+
chunks.append(text[i:i + chunk_size])
|
20 |
+
return chunks
|
21 |
+
|
22 |
+
# Function to save chunks to chromadb vector database
|
23 |
+
def save_to_chromadb(chunks, quiz_name, quiz_topic):
|
24 |
+
# Assume you have a ChromaDB instance named 'db'
|
25 |
+
db = chromadb.ChromaDB("your_chromadb_url")
|
26 |
+
for i, chunk in enumerate(chunks):
|
27 |
+
vector = langchain_openai.get_vector(chunk)
|
28 |
+
db.add_vector(quiz_name, quiz_topic, i, vector)
|
29 |
+
|
30 |
+
# Function to generate questions using ChatGPT-3.5-turbo-16k
|
31 |
+
def generate_questions(topic):
|
32 |
+
prompt = f"Generate questions on the topic: {topic}"
|
33 |
+
response = langchain_openai.complete(prompt)
|
34 |
+
return response.choices[0].text.strip()
|
35 |
+
|
36 |
+
# Streamlit interface
|
37 |
+
def main():
|
38 |
+
st.title("Quiz Generator")
|
39 |
+
|
40 |
+
# User inputs
|
41 |
+
quiz_name = st.text_input("Enter Quiz Name:")
|
42 |
+
quiz_topic = st.text_input("Enter Quiz Topic:")
|
43 |
+
num_questions = st.number_input("Number of Questions:", value=5, min_value=1)
|
44 |
+
pdf_path = st.file_uploader("Upload PDF File:", type=["pdf"])
|
45 |
+
|
46 |
+
if pdf_path:
|
47 |
+
# Extract text from PDF
|
48 |
+
pdf_text = extract_text_from_pdf(pdf_path)
|
49 |
+
|
50 |
+
# Create and save text chunks to ChromaDB
|
51 |
+
text_chunks = create_text_chunks(pdf_text)
|
52 |
+
save_to_chromadb(text_chunks, quiz_name, quiz_topic)
|
53 |
+
|
54 |
+
# User input for query
|
55 |
+
user_query = st.text_input("Enter Query for Question Generation:")
|
56 |
+
|
57 |
+
# Search for the topic in the vector database
|
58 |
+
if quiz_topic in db.get_topics(quiz_name):
|
59 |
+
# Generate questions using ChatGPT-3.5-turbo-16k
|
60 |
+
generated_questions = generate_questions(user_query)
|
61 |
+
|
62 |
+
st.subheader("Generated Questions:")
|
63 |
+
st.write(generated_questions)
|
64 |
+
else:
|
65 |
+
st.warning("Specified topic not found in the document.")
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
main()
|