Spaces:
Runtime error
Runtime error
complete-dope
commited on
Commit
•
e29386b
1
Parent(s):
8a8d3b0
updated
Browse files- main.py +155 -0
- prov_data2.jsonl +0 -0
- requirements.txt +9 -0
main.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#this repo contains the code for mixtral model for finding the icd-10 codes and this scripts runs well on the single GPU and is now trying to run with the multiple GPU and i need to make sure that this script runs in a multi gpu environment
|
2 |
+
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings("ignore")
|
5 |
+
|
6 |
+
from accelerate import FullyShardedDataParallelPlugin, Accelerator
|
7 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig
|
8 |
+
from datasets import load_dataset
|
9 |
+
import torch
|
10 |
+
import transformers
|
11 |
+
from datetime import datetime
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
13 |
+
from peft import prepare_model_for_kbit_training , LoraConfig, get_peft_model
|
14 |
+
|
15 |
+
fsdp_plugin = FullyShardedDataParallelPlugin(
|
16 |
+
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),
|
17 |
+
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
|
18 |
+
) #made to distribute the weights across multi gpu env
|
19 |
+
|
20 |
+
accelerator = Accelerator(fsdp_plugin=fsdp_plugin)
|
21 |
+
|
22 |
+
## Loading the dataset
|
23 |
+
def Profiler_load_dataset(data_files , field = 'train'):
|
24 |
+
return load_dataset('json' , data_files = data_files , field= field)
|
25 |
+
|
26 |
+
|
27 |
+
## high ram used here
|
28 |
+
train_dataset = Profiler_load_dataset(data_files='/content/prov_data2.jsonl', field='train')
|
29 |
+
eval_dataset = Profiler_load_dataset(data_files='/content/prov_data2.jsonl', field='test')
|
30 |
+
|
31 |
+
|
32 |
+
### What is the use of formatting function ?
|
33 |
+
## It formats the data in this form for the mixtral model ( means easy to use in an instruction fine-tuning scenario )
|
34 |
+
def format_fun(example):
|
35 |
+
text = f" The ICD10 code for {example['Input']} is , {example['Output']} "
|
36 |
+
return text
|
37 |
+
|
38 |
+
# base_model_id = "mistralai/Mixtral-8x7B-v0.1"
|
39 |
+
#try out different models from the hugging faces library ( the best would have been the once released by the authors but that wont be quantised so dont think it would work well !!
|
40 |
+
|
41 |
+
|
42 |
+
base_model_id = '' # this is passed in as arg -> args.model_id
|
43 |
+
|
44 |
+
bnb_config = BitsAndBytesConfig(
|
45 |
+
load_in_4bit=True,
|
46 |
+
bnb_4bit_use_double_quant=True,
|
47 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
48 |
+
)
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, quantization_config=bnb_config, device_map="cuda")
|
51 |
+
## The model got loaded and works !!
|
52 |
+
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
55 |
+
base_model_id,
|
56 |
+
padding_side="left",
|
57 |
+
add_eos_token=True,
|
58 |
+
add_bos_token=True,
|
59 |
+
)
|
60 |
+
tokenizer.pad_token = tokenizer.eos_token
|
61 |
+
|
62 |
+
|
63 |
+
max_length = 50 #max number of word generation
|
64 |
+
def generate_and_tokenize_prompt(prompt):
|
65 |
+
result = tokenizer(
|
66 |
+
format_fun(prompt),
|
67 |
+
truncation=True,
|
68 |
+
max_length=max_length,
|
69 |
+
padding="max_length",
|
70 |
+
)
|
71 |
+
result["labels"] = result["input_ids"].copy() #what this do ??
|
72 |
+
return result
|
73 |
+
|
74 |
+
tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
|
75 |
+
tokenized_val_dataset = eval_dataset.map(generate_and_tokenize_prompt)
|
76 |
+
|
77 |
+
|
78 |
+
#Fine tuning the model
|
79 |
+
model.gradient_checkpointing_enable()
|
80 |
+
model = prepare_model_for_kbit_training(model)
|
81 |
+
|
82 |
+
config = LoraConfig(
|
83 |
+
r=32,
|
84 |
+
lora_alpha=64,
|
85 |
+
target_modules=[
|
86 |
+
"q_proj",
|
87 |
+
"k_proj",
|
88 |
+
"v_proj",
|
89 |
+
"o_proj",
|
90 |
+
"w1",
|
91 |
+
"w2",
|
92 |
+
"w3",
|
93 |
+
"lm_head",
|
94 |
+
],
|
95 |
+
bias="none",
|
96 |
+
lora_dropout=0.05, # Conventional
|
97 |
+
task_type="CAUSAL_LM",
|
98 |
+
)
|
99 |
+
|
100 |
+
model = get_peft_model(model, config)
|
101 |
+
|
102 |
+
if torch.cuda.device_count() > 1: # If more than 1 GPU
|
103 |
+
model.is_parallelizable = True
|
104 |
+
model.model_parallel = True
|
105 |
+
|
106 |
+
|
107 |
+
project = "icd-finetune"
|
108 |
+
base_model_name = "mixtral"
|
109 |
+
run_name = base_model_name + "-" + project
|
110 |
+
output_dir = "./" + run_name
|
111 |
+
|
112 |
+
trainer = transformers.Trainer(
|
113 |
+
model=model,
|
114 |
+
train_dataset=tokenized_train_dataset,
|
115 |
+
eval_dataset=tokenized_val_dataset,
|
116 |
+
args=transformers.TrainingArguments(
|
117 |
+
output_dir=output_dir,
|
118 |
+
warmup_steps=1,
|
119 |
+
per_device_train_batch_size=2,
|
120 |
+
gradient_accumulation_steps=1,
|
121 |
+
gradient_checkpointing=True,
|
122 |
+
max_steps=300,
|
123 |
+
learning_rate=2.5e-5, # Want a small lr for finetuning
|
124 |
+
fp16=True,
|
125 |
+
optim="paged_adamw_8bit",
|
126 |
+
logging_steps=25, # When to start reporting loss
|
127 |
+
logging_dir="./logs", # Directory for storing logs
|
128 |
+
save_strategy="steps", # Save the model checkpoint every logging step
|
129 |
+
save_steps=25, # Save checkpoints every 50 steps
|
130 |
+
evaluation_strategy="steps", # Evaluate the model every logging step
|
131 |
+
eval_steps=25, # Evaluate and save checkpoints every 50 steps
|
132 |
+
do_eval=True, # Perform evaluation at the end of training
|
133 |
+
),
|
134 |
+
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
135 |
+
)
|
136 |
+
|
137 |
+
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
138 |
+
trainer.train()
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
# Implement RAG on the fine tuned model
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
# final model prepared
|
149 |
+
'''
|
150 |
+
1) Make sure the model runs on multi gpu script !
|
151 |
+
2) The dataset is loaded
|
152 |
+
3) The langchain implementation to oversee the prompt generation guide
|
153 |
+
4) Also try the bert models rather than directly using the mixtral model ()
|
154 |
+
5) Once the model is trained copy the checkpoint folder and paste in a local env
|
155 |
+
'''
|
prov_data2.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
git+https://github.com/huggingface/transformers.git
|
4 |
+
git+https://github.com/huggingface/peft.git
|
5 |
+
git+https://github.com/huggingface/accelerate.git
|
6 |
+
datasets
|
7 |
+
scipy
|
8 |
+
ipywidgets
|
9 |
+
matplotlib
|