File size: 24,104 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
### This file contains impls for underlying related models (CLIP, T5, etc)

import torch
import math
from torch import nn
from transformers import CLIPTokenizer, T5TokenizerFast

from modules import sd_hijack


#################################################################################################
### Core/Utility
#################################################################################################


class AutocastLinear(nn.Linear):
    """Same as usual linear layer, but casts its weights to whatever the parameter type is.

    This is different from torch.autocast in a way that float16 layer processing float32 input
    will return float16 with autocast on, and float32 with this. T5 seems to be fucked
    if you do it in full float16 (returning almost all zeros in the final output).
    """

    def forward(self, x):
        return torch.nn.functional.linear(x, self.weight.to(x.dtype), self.bias.to(x.dtype) if self.bias is not None else None)


def attention(q, k, v, heads, mask=None):
    """Convenience wrapper around a basic attention operation"""
    b, _, dim_head = q.shape
    dim_head //= heads
    q, k, v = [t.view(b, -1, heads, dim_head).transpose(1, 2) for t in (q, k, v)]
    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
    return out.transpose(1, 2).reshape(b, -1, heads * dim_head)


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks"""
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, dtype=None, device=None):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
        self.act = act_layer
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


#################################################################################################
### CLIP
#################################################################################################


class CLIPAttention(torch.nn.Module):
    def __init__(self, embed_dim, heads, dtype, device):
        super().__init__()
        self.heads = heads
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)

    def forward(self, x, mask=None):
        q = self.q_proj(x)
        k = self.k_proj(x)
        v = self.v_proj(x)
        out = attention(q, k, v, self.heads, mask)
        return self.out_proj(out)


ACTIVATIONS = {
    "quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
    "gelu": torch.nn.functional.gelu,
}

class CLIPLayer(torch.nn.Module):
    def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
        super().__init__()
        self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
        self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
        self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
        #self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
        self.mlp = Mlp(embed_dim, intermediate_size, embed_dim, act_layer=ACTIVATIONS[intermediate_activation], dtype=dtype, device=device)

    def forward(self, x, mask=None):
        x += self.self_attn(self.layer_norm1(x), mask)
        x += self.mlp(self.layer_norm2(x))
        return x


class CLIPEncoder(torch.nn.Module):
    def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
        super().__init__()
        self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) for i in range(num_layers)])

    def forward(self, x, mask=None, intermediate_output=None):
        if intermediate_output is not None:
            if intermediate_output < 0:
                intermediate_output = len(self.layers) + intermediate_output
        intermediate = None
        for i, layer in enumerate(self.layers):
            x = layer(x, mask)
            if i == intermediate_output:
                intermediate = x.clone()
        return x, intermediate


class CLIPEmbeddings(torch.nn.Module):
    def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, textual_inversion_key="clip_l"):
        super().__init__()
        self.token_embedding = sd_hijack.TextualInversionEmbeddings(vocab_size, embed_dim, dtype=dtype, device=device, textual_inversion_key=textual_inversion_key)
        self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)

    def forward(self, input_tokens):
        return self.token_embedding(input_tokens) + self.position_embedding.weight


class CLIPTextModel_(torch.nn.Module):
    def __init__(self, config_dict, dtype, device):
        num_layers = config_dict["num_hidden_layers"]
        embed_dim = config_dict["hidden_size"]
        heads = config_dict["num_attention_heads"]
        intermediate_size = config_dict["intermediate_size"]
        intermediate_activation = config_dict["hidden_act"]
        super().__init__()
        self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device, textual_inversion_key=config_dict.get('textual_inversion_key', 'clip_l'))
        self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device)
        self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)

    def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
        x = self.embeddings(input_tokens)
        causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
        x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
        x = self.final_layer_norm(x)
        if i is not None and final_layer_norm_intermediate:
            i = self.final_layer_norm(i)
        pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
        return x, i, pooled_output


class CLIPTextModel(torch.nn.Module):
    def __init__(self, config_dict, dtype, device):
        super().__init__()
        self.num_layers = config_dict["num_hidden_layers"]
        self.text_model = CLIPTextModel_(config_dict, dtype, device)
        embed_dim = config_dict["hidden_size"]
        self.text_projection = nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
        self.text_projection.weight.copy_(torch.eye(embed_dim))
        self.dtype = dtype

    def get_input_embeddings(self):
        return self.text_model.embeddings.token_embedding

    def set_input_embeddings(self, embeddings):
        self.text_model.embeddings.token_embedding = embeddings

    def forward(self, *args, **kwargs):
        x = self.text_model(*args, **kwargs)
        out = self.text_projection(x[2])
        return (x[0], x[1], out, x[2])


class SDTokenizer:
    def __init__(self, max_length=77, pad_with_end=True, tokenizer=None, has_start_token=True, pad_to_max_length=True, min_length=None):
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.min_length = min_length
        empty = self.tokenizer('')["input_ids"]
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
        self.pad_with_end = pad_with_end
        self.pad_to_max_length = pad_to_max_length
        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
        self.max_word_length = 8


    def tokenize_with_weights(self, text:str):
        """Tokenize the text, with weight values - presume 1.0 for all and ignore other features here. The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3."""
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0))
        to_tokenize = text.replace("\n", " ").split(' ')
        to_tokenize = [x for x in to_tokenize if x != ""]
        for word in to_tokenize:
            batch.extend([(t, 1) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
        batch.append((self.end_token, 1.0))
        if self.pad_to_max_length:
            batch.extend([(pad_token, 1.0)] * (self.max_length - len(batch)))
        if self.min_length is not None and len(batch) < self.min_length:
            batch.extend([(pad_token, 1.0)] * (self.min_length - len(batch)))
        return [batch]


class SDXLClipGTokenizer(SDTokenizer):
    def __init__(self, tokenizer):
        super().__init__(pad_with_end=False, tokenizer=tokenizer)


class SD3Tokenizer:
    def __init__(self):
        clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
        self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
        self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
        self.t5xxl = T5XXLTokenizer()

    def tokenize_with_weights(self, text:str):
        out = {}
        out["g"] = self.clip_g.tokenize_with_weights(text)
        out["l"] = self.clip_l.tokenize_with_weights(text)
        out["t5xxl"] = self.t5xxl.tokenize_with_weights(text)
        return out


class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
        tokens = [a[0] for a in token_weight_pairs[0]]
        out, pooled = self([tokens])
        if pooled is not None:
            first_pooled = pooled[0:1].cpu()
        else:
            first_pooled = pooled
        output = [out[0:1]]
        return torch.cat(output, dim=-2).cpu(), first_pooled


class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = ["last", "pooled", "hidden"]
    def __init__(self, device="cpu", max_length=77, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=CLIPTextModel,
                 special_tokens=None, layer_norm_hidden_state=True, return_projected_pooled=True):
        super().__init__()
        assert layer in self.LAYERS
        self.transformer = model_class(textmodel_json_config, dtype, device)
        self.num_layers = self.transformer.num_layers
        self.max_length = max_length
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False
        self.layer = layer
        self.layer_idx = None
        self.special_tokens = special_tokens if special_tokens is not None else {"start": 49406, "end": 49407, "pad": 49407}
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
        self.layer_norm_hidden_state = layer_norm_hidden_state
        self.return_projected_pooled = return_projected_pooled
        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) < self.num_layers
            self.set_clip_options({"layer": layer_idx})
        self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)

    def set_clip_options(self, options):
        layer_idx = options.get("layer", self.layer_idx)
        self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
        if layer_idx is None or abs(layer_idx) > self.num_layers:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

    def forward(self, tokens):
        backup_embeds = self.transformer.get_input_embeddings()
        tokens = torch.asarray(tokens, dtype=torch.int64, device=backup_embeds.weight.device)
        outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
        self.transformer.set_input_embeddings(backup_embeds)
        if self.layer == "last":
            z = outputs[0]
        else:
            z = outputs[1]
        pooled_output = None
        if len(outputs) >= 3:
            if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
                pooled_output = outputs[3].float()
            elif outputs[2] is not None:
                pooled_output = outputs[2].float()
        return z.float(), pooled_output


class SDXLClipG(SDClipModel):
    """Wraps the CLIP-G model into the SD-CLIP-Model interface"""
    def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
        if layer == "penultimate":
            layer="hidden"
            layer_idx=-2
        super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)


class T5XXLModel(SDClipModel):
    """Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
    def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
        super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5)


#################################################################################################
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
#################################################################################################

class T5XXLTokenizer(SDTokenizer):
    """Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
    def __init__(self):
        super().__init__(pad_with_end=False, tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"), has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)


class T5LayerNorm(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
        self.variance_epsilon = eps

    def forward(self, x):
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight.to(device=x.device, dtype=x.dtype) * x


class T5DenseGatedActDense(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, dtype, device):
        super().__init__()
        self.wi_0 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
        self.wi_1 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
        self.wo = AutocastLinear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)

    def forward(self, x):
        hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
        hidden_linear = self.wi_1(x)
        x = hidden_gelu * hidden_linear
        x = self.wo(x)
        return x


class T5LayerFF(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, dtype, device):
        super().__init__()
        self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
        self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)

    def forward(self, x):
        forwarded_states = self.layer_norm(x)
        forwarded_states = self.DenseReluDense(forwarded_states)
        x += forwarded_states
        return x


class T5Attention(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
        super().__init__()
        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.k = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.v = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.o = AutocastLinear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
        self.num_heads = num_heads
        self.relative_attention_bias = None
        if relative_attention_bias:
            self.relative_attention_num_buckets = 32
            self.relative_attention_max_distance = 128
            self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

        Translate relative position to a bucket number for relative attention. The relative position is defined as
        memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
        position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
        small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
        positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
        This should allow for more graceful generalization to longer sequences than the model has been trained on

        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
            max_distance: an integer

        Returns:
            a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
        """
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
        else:
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)
        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact
        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
            torch.log(relative_position.float() / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).to(torch.long)
        relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1))
        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length, device):
        """Compute binned relative position bias"""
        context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # shape (query_length, key_length)
            bidirectional=True,
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
        return values

    def forward(self, x, past_bias=None):
        q = self.q(x)
        k = self.k(x)
        v = self.v(x)

        if self.relative_attention_bias is not None:
            past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
        if past_bias is not None:
            mask = past_bias
        else:
            mask = None

        out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask.to(x.dtype) if mask is not None else None)

        return self.o(out), past_bias


class T5LayerSelfAttention(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
        super().__init__()
        self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
        self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)

    def forward(self, x, past_bias=None):
        output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
        x += output
        return x, past_bias


class T5Block(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
        super().__init__()
        self.layer = torch.nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device))
        self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))

    def forward(self, x, past_bias=None):
        x, past_bias = self.layer[0](x, past_bias)
        x = self.layer[-1](x)
        return x, past_bias


class T5Stack(torch.nn.Module):
    def __init__(self, num_layers, model_dim, inner_dim, ff_dim, num_heads, vocab_size, dtype, device):
        super().__init__()
        self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
        self.block = torch.nn.ModuleList([T5Block(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device) for i in range(num_layers)])
        self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)

    def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
        intermediate = None
        x = self.embed_tokens(input_ids).to(torch.float32)  # needs float32 or else T5 returns all zeroes
        past_bias = None
        for i, layer in enumerate(self.block):
            x, past_bias = layer(x, past_bias)
            if i == intermediate_output:
                intermediate = x.clone()
        x = self.final_layer_norm(x)
        if intermediate is not None and final_layer_norm_intermediate:
            intermediate = self.final_layer_norm(intermediate)
        return x, intermediate


class T5(torch.nn.Module):
    def __init__(self, config_dict, dtype, device):
        super().__init__()
        self.num_layers = config_dict["num_layers"]
        self.encoder = T5Stack(self.num_layers, config_dict["d_model"], config_dict["d_model"], config_dict["d_ff"], config_dict["num_heads"], config_dict["vocab_size"], dtype, device)
        self.dtype = dtype

    def get_input_embeddings(self):
        return self.encoder.embed_tokens

    def set_input_embeddings(self, embeddings):
        self.encoder.embed_tokens = embeddings

    def forward(self, *args, **kwargs):
        return self.encoder(*args, **kwargs)