Spaces:
Runtime error
Runtime error
### This file contains impls for MM-DiT, the core model component of SD3 | |
import math | |
from typing import Dict, Optional | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from einops import rearrange, repeat | |
from modules.models.sd3.other_impls import attention, Mlp | |
class PatchEmbed(nn.Module): | |
""" 2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
img_size: Optional[int] = 224, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
flatten: bool = True, | |
bias: bool = True, | |
strict_img_size: bool = True, | |
dynamic_img_pad: bool = False, | |
dtype=None, | |
device=None, | |
): | |
super().__init__() | |
self.patch_size = (patch_size, patch_size) | |
if img_size is not None: | |
self.img_size = (img_size, img_size) | |
self.grid_size = tuple([s // p for s, p in zip(self.img_size, self.patch_size)]) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
else: | |
self.img_size = None | |
self.grid_size = None | |
self.num_patches = None | |
# flatten spatial dim and transpose to channels last, kept for bwd compat | |
self.flatten = flatten | |
self.strict_img_size = strict_img_size | |
self.dynamic_img_pad = dynamic_img_pad | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias, dtype=dtype, device=device) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # NCHW -> NLC | |
return x | |
def modulate(x, shift, scale): | |
if shift is None: | |
shift = torch.zeros_like(scale) | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Sine/Cosine Positional Embedding Functions # | |
################################################################################# | |
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scaling_factor=None, offset=None): | |
""" | |
grid_size: int of the grid height and width | |
return: | |
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
grid_h = np.arange(grid_size, dtype=np.float32) | |
grid_w = np.arange(grid_size, dtype=np.float32) | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
if scaling_factor is not None: | |
grid = grid / scaling_factor | |
if offset is not None: | |
grid = grid - offset | |
grid = grid.reshape([2, 1, grid_size, grid_size]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
assert embed_dim % 2 == 0 | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position | |
pos: a list of positions to be encoded: size (M,) | |
out: (M, D) | |
""" | |
assert embed_dim % 2 == 0 | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
return np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
"""Embeds scalar timesteps into vector representations.""" | |
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) | |
* torch.arange(start=0, end=half, dtype=torch.float32) | |
/ half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(dtype=t.dtype) | |
return embedding | |
def forward(self, t, dtype, **kwargs): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class VectorEmbedder(nn.Module): | |
"""Embeds a flat vector of dimension input_dim""" | |
def __init__(self, input_dim: int, hidden_size: int, dtype=None, device=None): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(input_dim, hidden_size, bias=True, dtype=dtype, device=device), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.mlp(x) | |
################################################################################# | |
# Core DiT Model # | |
################################################################################# | |
class QkvLinear(torch.nn.Linear): | |
pass | |
def split_qkv(qkv, head_dim): | |
qkv = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, -1, head_dim).movedim(2, 0) | |
return qkv[0], qkv[1], qkv[2] | |
def optimized_attention(qkv, num_heads): | |
return attention(qkv[0], qkv[1], qkv[2], num_heads) | |
class SelfAttention(nn.Module): | |
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
qk_scale: Optional[float] = None, | |
attn_mode: str = "xformers", | |
pre_only: bool = False, | |
qk_norm: Optional[str] = None, | |
rmsnorm: bool = False, | |
dtype=None, | |
device=None, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.qkv = QkvLinear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) | |
if not pre_only: | |
self.proj = nn.Linear(dim, dim, dtype=dtype, device=device) | |
assert attn_mode in self.ATTENTION_MODES | |
self.attn_mode = attn_mode | |
self.pre_only = pre_only | |
if qk_norm == "rms": | |
self.ln_q = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
self.ln_k = RMSNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
elif qk_norm == "ln": | |
self.ln_q = nn.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
self.ln_k = nn.LayerNorm(self.head_dim, elementwise_affine=True, eps=1.0e-6, dtype=dtype, device=device) | |
elif qk_norm is None: | |
self.ln_q = nn.Identity() | |
self.ln_k = nn.Identity() | |
else: | |
raise ValueError(qk_norm) | |
def pre_attention(self, x: torch.Tensor): | |
B, L, C = x.shape | |
qkv = self.qkv(x) | |
q, k, v = split_qkv(qkv, self.head_dim) | |
q = self.ln_q(q).reshape(q.shape[0], q.shape[1], -1) | |
k = self.ln_k(k).reshape(q.shape[0], q.shape[1], -1) | |
return (q, k, v) | |
def post_attention(self, x: torch.Tensor) -> torch.Tensor: | |
assert not self.pre_only | |
x = self.proj(x) | |
return x | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
(q, k, v) = self.pre_attention(x) | |
x = attention(q, k, v, self.num_heads) | |
x = self.post_attention(x) | |
return x | |
class RMSNorm(torch.nn.Module): | |
def __init__( | |
self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None | |
): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
super().__init__() | |
self.eps = eps | |
self.learnable_scale = elementwise_affine | |
if self.learnable_scale: | |
self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype)) | |
else: | |
self.register_parameter("weight", None) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
x = self._norm(x) | |
if self.learnable_scale: | |
return x * self.weight.to(device=x.device, dtype=x.dtype) | |
else: | |
return x | |
class SwiGLUFeedForward(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
hidden_dim: int, | |
multiple_of: int, | |
ffn_dim_multiplier: Optional[float] = None, | |
): | |
""" | |
Initialize the FeedForward module. | |
Args: | |
dim (int): Input dimension. | |
hidden_dim (int): Hidden dimension of the feedforward layer. | |
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. | |
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. | |
Attributes: | |
w1 (ColumnParallelLinear): Linear transformation for the first layer. | |
w2 (RowParallelLinear): Linear transformation for the second layer. | |
w3 (ColumnParallelLinear): Linear transformation for the third layer. | |
""" | |
super().__init__() | |
hidden_dim = int(2 * hidden_dim / 3) | |
# custom dim factor multiplier | |
if ffn_dim_multiplier is not None: | |
hidden_dim = int(ffn_dim_multiplier * hidden_dim) | |
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
self.w1 = nn.Linear(dim, hidden_dim, bias=False) | |
self.w2 = nn.Linear(hidden_dim, dim, bias=False) | |
self.w3 = nn.Linear(dim, hidden_dim, bias=False) | |
def forward(self, x): | |
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x)) | |
class DismantledBlock(nn.Module): | |
"""A DiT block with gated adaptive layer norm (adaLN) conditioning.""" | |
ATTENTION_MODES = ("xformers", "torch", "torch-hb", "math", "debug") | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
attn_mode: str = "xformers", | |
qkv_bias: bool = False, | |
pre_only: bool = False, | |
rmsnorm: bool = False, | |
scale_mod_only: bool = False, | |
swiglu: bool = False, | |
qk_norm: Optional[str] = None, | |
dtype=None, | |
device=None, | |
**block_kwargs, | |
): | |
super().__init__() | |
assert attn_mode in self.ATTENTION_MODES | |
if not rmsnorm: | |
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
else: | |
self.norm1 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=pre_only, qk_norm=qk_norm, rmsnorm=rmsnorm, dtype=dtype, device=device) | |
if not pre_only: | |
if not rmsnorm: | |
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
else: | |
self.norm2 = RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
if not pre_only: | |
if not swiglu: | |
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=nn.GELU(approximate="tanh"), dtype=dtype, device=device) | |
else: | |
self.mlp = SwiGLUFeedForward(dim=hidden_size, hidden_dim=mlp_hidden_dim, multiple_of=256) | |
self.scale_mod_only = scale_mod_only | |
if not scale_mod_only: | |
n_mods = 6 if not pre_only else 2 | |
else: | |
n_mods = 4 if not pre_only else 1 | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, n_mods * hidden_size, bias=True, dtype=dtype, device=device)) | |
self.pre_only = pre_only | |
def pre_attention(self, x: torch.Tensor, c: torch.Tensor): | |
assert x is not None, "pre_attention called with None input" | |
if not self.pre_only: | |
if not self.scale_mod_only: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) | |
else: | |
shift_msa = None | |
shift_mlp = None | |
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(4, dim=1) | |
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) | |
return qkv, (x, gate_msa, shift_mlp, scale_mlp, gate_mlp) | |
else: | |
if not self.scale_mod_only: | |
shift_msa, scale_msa = self.adaLN_modulation(c).chunk(2, dim=1) | |
else: | |
shift_msa = None | |
scale_msa = self.adaLN_modulation(c) | |
qkv = self.attn.pre_attention(modulate(self.norm1(x), shift_msa, scale_msa)) | |
return qkv, None | |
def post_attention(self, attn, x, gate_msa, shift_mlp, scale_mlp, gate_mlp): | |
assert not self.pre_only | |
x = x + gate_msa.unsqueeze(1) * self.attn.post_attention(attn) | |
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) | |
return x | |
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: | |
assert not self.pre_only | |
(q, k, v), intermediates = self.pre_attention(x, c) | |
attn = attention(q, k, v, self.attn.num_heads) | |
return self.post_attention(attn, *intermediates) | |
def block_mixing(context, x, context_block, x_block, c): | |
assert context is not None, "block_mixing called with None context" | |
context_qkv, context_intermediates = context_block.pre_attention(context, c) | |
x_qkv, x_intermediates = x_block.pre_attention(x, c) | |
o = [] | |
for t in range(3): | |
o.append(torch.cat((context_qkv[t], x_qkv[t]), dim=1)) | |
q, k, v = tuple(o) | |
attn = attention(q, k, v, x_block.attn.num_heads) | |
context_attn, x_attn = (attn[:, : context_qkv[0].shape[1]], attn[:, context_qkv[0].shape[1] :]) | |
if not context_block.pre_only: | |
context = context_block.post_attention(context_attn, *context_intermediates) | |
else: | |
context = None | |
x = x_block.post_attention(x_attn, *x_intermediates) | |
return context, x | |
class JointBlock(nn.Module): | |
"""just a small wrapper to serve as a fsdp unit""" | |
def __init__(self, *args, **kwargs): | |
super().__init__() | |
pre_only = kwargs.pop("pre_only") | |
qk_norm = kwargs.pop("qk_norm", None) | |
self.context_block = DismantledBlock(*args, pre_only=pre_only, qk_norm=qk_norm, **kwargs) | |
self.x_block = DismantledBlock(*args, pre_only=False, qk_norm=qk_norm, **kwargs) | |
def forward(self, *args, **kwargs): | |
return block_mixing(*args, context_block=self.context_block, x_block=self.x_block, **kwargs) | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, total_out_channels: Optional[int] = None, dtype=None, device=None): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) | |
self.linear = ( | |
nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) | |
if (total_out_channels is None) | |
else nn.Linear(hidden_size, total_out_channels, bias=True, dtype=dtype, device=device) | |
) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) | |
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor: | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class MMDiT(nn.Module): | |
"""Diffusion model with a Transformer backbone.""" | |
def __init__( | |
self, | |
input_size: int = 32, | |
patch_size: int = 2, | |
in_channels: int = 4, | |
depth: int = 28, | |
mlp_ratio: float = 4.0, | |
learn_sigma: bool = False, | |
adm_in_channels: Optional[int] = None, | |
context_embedder_config: Optional[Dict] = None, | |
register_length: int = 0, | |
attn_mode: str = "torch", | |
rmsnorm: bool = False, | |
scale_mod_only: bool = False, | |
swiglu: bool = False, | |
out_channels: Optional[int] = None, | |
pos_embed_scaling_factor: Optional[float] = None, | |
pos_embed_offset: Optional[float] = None, | |
pos_embed_max_size: Optional[int] = None, | |
num_patches = None, | |
qk_norm: Optional[str] = None, | |
qkv_bias: bool = True, | |
dtype = None, | |
device = None, | |
): | |
super().__init__() | |
self.dtype = dtype | |
self.learn_sigma = learn_sigma | |
self.in_channels = in_channels | |
default_out_channels = in_channels * 2 if learn_sigma else in_channels | |
self.out_channels = out_channels if out_channels is not None else default_out_channels | |
self.patch_size = patch_size | |
self.pos_embed_scaling_factor = pos_embed_scaling_factor | |
self.pos_embed_offset = pos_embed_offset | |
self.pos_embed_max_size = pos_embed_max_size | |
# apply magic --> this defines a head_size of 64 | |
hidden_size = 64 * depth | |
num_heads = depth | |
self.num_heads = num_heads | |
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True, strict_img_size=self.pos_embed_max_size is None, dtype=dtype, device=device) | |
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device) | |
if adm_in_channels is not None: | |
assert isinstance(adm_in_channels, int) | |
self.y_embedder = VectorEmbedder(adm_in_channels, hidden_size, dtype=dtype, device=device) | |
self.context_embedder = nn.Identity() | |
if context_embedder_config is not None: | |
if context_embedder_config["target"] == "torch.nn.Linear": | |
self.context_embedder = nn.Linear(**context_embedder_config["params"], dtype=dtype, device=device) | |
self.register_length = register_length | |
if self.register_length > 0: | |
self.register = nn.Parameter(torch.randn(1, register_length, hidden_size, dtype=dtype, device=device)) | |
# num_patches = self.x_embedder.num_patches | |
# Will use fixed sin-cos embedding: | |
# just use a buffer already | |
if num_patches is not None: | |
self.register_buffer( | |
"pos_embed", | |
torch.zeros(1, num_patches, hidden_size, dtype=dtype, device=device), | |
) | |
else: | |
self.pos_embed = None | |
self.joint_blocks = nn.ModuleList( | |
[ | |
JointBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, attn_mode=attn_mode, pre_only=i == depth - 1, rmsnorm=rmsnorm, scale_mod_only=scale_mod_only, swiglu=swiglu, qk_norm=qk_norm, dtype=dtype, device=device) | |
for i in range(depth) | |
] | |
) | |
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels, dtype=dtype, device=device) | |
def cropped_pos_embed(self, hw): | |
assert self.pos_embed_max_size is not None | |
p = self.x_embedder.patch_size[0] | |
h, w = hw | |
# patched size | |
h = h // p | |
w = w // p | |
assert h <= self.pos_embed_max_size, (h, self.pos_embed_max_size) | |
assert w <= self.pos_embed_max_size, (w, self.pos_embed_max_size) | |
top = (self.pos_embed_max_size - h) // 2 | |
left = (self.pos_embed_max_size - w) // 2 | |
spatial_pos_embed = rearrange( | |
self.pos_embed, | |
"1 (h w) c -> 1 h w c", | |
h=self.pos_embed_max_size, | |
w=self.pos_embed_max_size, | |
) | |
spatial_pos_embed = spatial_pos_embed[:, top : top + h, left : left + w, :] | |
spatial_pos_embed = rearrange(spatial_pos_embed, "1 h w c -> 1 (h w) c") | |
return spatial_pos_embed | |
def unpatchify(self, x, hw=None): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.out_channels | |
p = self.x_embedder.patch_size[0] | |
if hw is None: | |
h = w = int(x.shape[1] ** 0.5) | |
else: | |
h, w = hw | |
h = h // p | |
w = w // p | |
assert h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) | |
x = torch.einsum("nhwpqc->nchpwq", x) | |
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) | |
return imgs | |
def forward_core_with_concat(self, x: torch.Tensor, c_mod: torch.Tensor, context: Optional[torch.Tensor] = None) -> torch.Tensor: | |
if self.register_length > 0: | |
context = torch.cat((repeat(self.register, "1 ... -> b ...", b=x.shape[0]), context if context is not None else torch.Tensor([]).type_as(x)), 1) | |
# context is B, L', D | |
# x is B, L, D | |
for block in self.joint_blocks: | |
context, x = block(context, x, c=c_mod) | |
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) | |
return x | |
def forward(self, x: torch.Tensor, t: torch.Tensor, y: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None) -> torch.Tensor: | |
""" | |
Forward pass of DiT. | |
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) | |
t: (N,) tensor of diffusion timesteps | |
y: (N,) tensor of class labels | |
""" | |
hw = x.shape[-2:] | |
x = self.x_embedder(x) + self.cropped_pos_embed(hw) | |
c = self.t_embedder(t, dtype=x.dtype) # (N, D) | |
if y is not None: | |
y = self.y_embedder(y) # (N, D) | |
c = c + y # (N, D) | |
context = self.context_embedder(context) | |
x = self.forward_core_with_concat(x, c, context) | |
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) | |
return x | |