import torch import numpy as np import os import time import random import string import cv2 from backend import memory_management def prepare_free_memory(aggressive=False): if aggressive: memory_management.unload_all_models() print('Cleanup all memory.') return memory_management.free_memory(memory_required=memory_management.minimum_inference_memory(), device=memory_management.get_torch_device()) print('Cleanup minimal inference memory.') return def apply_circular_forge(model, tiling_enabled=False): if model.tiling_enabled == tiling_enabled: return print(f'Tiling: {tiling_enabled}') model.tiling_enabled = tiling_enabled # def flatten(el): # flattened = [flatten(children) for children in el.children()] # res = [el] # for c in flattened: # res += c # return res # # layers = flatten(model) # # for layer in [layer for layer in layers if 'Conv' in type(layer).__name__]: # layer.padding_mode = 'circular' if tiling_enabled else 'zeros' print(f'Tiling is currently under maintenance and unavailable. Sorry for the inconvenience.') return def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def generate_random_filename(extension=".txt"): timestamp = time.strftime("%Y%m%d-%H%M%S") random_string = ''.join(random.choices(string.ascii_lowercase + string.digits, k=5)) filename = f"{timestamp}-{random_string}{extension}" return filename @torch.no_grad() @torch.inference_mode() def pytorch_to_numpy(x): return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] @torch.no_grad() @torch.inference_mode() def numpy_to_pytorch(x): y = x.astype(np.float32) / 255.0 y = y[None] y = np.ascontiguousarray(y.copy()) y = torch.from_numpy(y).float() return y def write_images_to_mp4(frame_list: list, filename=None, fps=6): from modules.paths_internal import default_output_dir video_folder = os.path.join(default_output_dir, 'svd') os.makedirs(video_folder, exist_ok=True) if filename is None: filename = generate_random_filename('.mp4') full_path = os.path.join(video_folder, filename) try: import av except ImportError: from launch import run_pip run_pip( "install imageio[pyav]", "imageio[pyav]", ) import av options = { "crf": str(23) } output = av.open(full_path, "w") stream = output.add_stream('libx264', fps, options=options) stream.width = frame_list[0].shape[1] stream.height = frame_list[0].shape[0] for img in frame_list: frame = av.VideoFrame.from_ndarray(img) packet = stream.encode(frame) output.mux(packet) packet = stream.encode(None) output.mux(packet) output.close() return full_path def pad64(x): return int(np.ceil(float(x) / 64.0) * 64 - x) def safer_memory(x): # Fix many MAC/AMD problems return np.ascontiguousarray(x.copy()).copy() def resize_image_with_pad(img, resolution): H_raw, W_raw, _ = img.shape k = float(resolution) / float(min(H_raw, W_raw)) interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA H_target = int(np.round(float(H_raw) * k)) W_target = int(np.round(float(W_raw) * k)) img = cv2.resize(img, (W_target, H_target), interpolation=interpolation) H_pad, W_pad = pad64(H_target), pad64(W_target) img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge') def remove_pad(x): return safer_memory(x[:H_target, :W_target]) return safer_memory(img_padded), remove_pad def lazy_memory_management(model): required_memory = memory_management.module_size(model) + memory_management.minimum_inference_memory() memory_management.free_memory(required_memory, device=memory_management.get_torch_device()) return