test / app.py
mokazht's picture
add
13d8909
# ------------------------------------------------------------------------------
# Copyright (c) 2022-2023, NVIDIA Corporation & Affiliates. All rights reserved.
#
# This work is made available under the Nvidia Source Code License.
# To view a copy of this license, visit
# https://github.com/NVlabs/ODISE/blob/main/LICENSE
#
# Written by Jiarui Xu
# ------------------------------------------------------------------------------
import os
token = os.environ["GITHUB_TOKEN"]
os.system(f"pip install git+https://xvjiarui:{token}@github.com/xvjiarui/ODISE_NV.git")
import itertools
import json
from contextlib import ExitStack
import gradio as gr
import torch
from mask2former.data.datasets.register_ade20k_panoptic import ADE20K_150_CATEGORIES
from PIL import Image
from torch.cuda.amp import autocast
from detectron2.config import instantiate
from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from detectron2.evaluation import inference_context
from detectron2.utils.env import seed_all_rng
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import ColorMode, Visualizer, random_color
from odise import model_zoo
from odise.checkpoint import ODISECheckpointer
from odise.config import instantiate_odise
from odise.data import get_openseg_labels
from odise.modeling.wrapper import OpenPanopticInference
from odise.utils.file_io import ODISEHandler, PathManager
from odise.model_zoo.model_zoo import _ModelZooUrls
for k in ODISEHandler.URLS:
ODISEHandler.URLS[k] = ODISEHandler.URLS[k].replace("https://github.com/NVlabs/ODISE/releases/download/v1.0.0/", "https://huggingface.co/xvjiarui/download_cache/resolve/main/torch/odise/")
PathManager.register_handler(ODISEHandler())
_ModelZooUrls.PREFIX = _ModelZooUrls.PREFIX.replace("https://github.com/NVlabs/ODISE/releases/download/v1.0.0/", "https://huggingface.co/xvjiarui/download_cache/resolve/main/torch/odise/")
setup_logger()
logger = setup_logger(name="odise")
COCO_THING_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("coco_panoptic", True))
if COCO_CATEGORIES[idx]["isthing"] == 1
]
COCO_THING_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 1]
COCO_STUFF_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("coco_panoptic", True))
if COCO_CATEGORIES[idx]["isthing"] == 0
]
COCO_STUFF_COLORS = [c["color"] for c in COCO_CATEGORIES if c["isthing"] == 0]
ADE_THING_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("ade20k_150", True))
if ADE20K_150_CATEGORIES[idx]["isthing"] == 1
]
ADE_THING_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 1]
ADE_STUFF_CLASSES = [
label
for idx, label in enumerate(get_openseg_labels("ade20k_150", True))
if ADE20K_150_CATEGORIES[idx]["isthing"] == 0
]
ADE_STUFF_COLORS = [c["color"] for c in ADE20K_150_CATEGORIES if c["isthing"] == 0]
LVIS_CLASSES = get_openseg_labels("lvis_1203", True)
# use beautiful coco colors
LVIS_COLORS = list(
itertools.islice(itertools.cycle([c["color"] for c in COCO_CATEGORIES]), len(LVIS_CLASSES))
)
class VisualizationDemo(object):
def __init__(self, model, metadata, aug, instance_mode=ColorMode.IMAGE):
"""
Args:
model (nn.Module):
metadata (MetadataCatalog): image metadata.
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.model = model
self.metadata = metadata
self.aug = aug
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
def predict(self, original_image):
"""
Args:
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
Returns:
predictions (dict):
the output of the model for one image only.
See :doc:`/tutorials/models` for details about the format.
"""
height, width = original_image.shape[:2]
aug_input = T.AugInput(original_image, sem_seg=None)
self.aug(aug_input)
image = aug_input.image
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
logger.info("forwarding")
with autocast():
predictions = self.model([inputs])[0]
logger.info("done")
return predictions
def run_on_image(self, image):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
vis_output = None
predictions = self.predict(image)
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output = visualizer.draw_panoptic_seg(
panoptic_seg.to(self.cpu_device), segments_info
)
else:
if "sem_seg" in predictions:
vis_output = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
if "instances" in predictions:
instances = predictions["instances"].to(self.cpu_device)
vis_output = visualizer.draw_instance_predictions(predictions=instances)
return predictions, vis_output
cfg = model_zoo.get_config("Panoptic/odise_label_coco_50e.py", trained=True)
cfg.model.overlap_threshold = 0
cfg.train.device = "cuda" if torch.cuda.is_available() else "cpu"
seed_all_rng(42)
dataset_cfg = cfg.dataloader.test
wrapper_cfg = cfg.dataloader.wrapper
aug = instantiate(dataset_cfg.mapper).augmentations
model = instantiate_odise(cfg.model)
model.to(torch.float16)
model.to(cfg.train.device)
ODISECheckpointer(model).load(cfg.train.init_checkpoint)
title = "ODISE"
description = """
<p style='text-align: center'> <a href='https://jerryxu.net/ODISE' target='_blank'>Project Page</a> | <a href='https://arxiv.org/abs/2303.04803' target='_blank'>Paper</a> | <a href='https://github.com/NVlabs/ODISE' target='_blank'>Code</a> | <a href='https://youtu.be/Su7p5KYmcII' target='_blank'>Video</a></p>
Gradio demo for ODISE: Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models. \n
You may click on of the examples or upload your own image. \n
ODISE could perform open vocabulary segmentation, you may input more classes (separate by comma).
The expected format is 'a1,a2;b1,b2', where a1,a2 are synonyms vocabularies for the first class.
The first word will be displayed as the class name.
""" # noqa
article = """
<p style='text-align: center'><a href='https://arxiv.org/abs/2303.04803' target='_blank'>Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models</a> | <a href='https://github.com/NVlab/ODISE' target='_blank'>Github Repo</a></p>
""" # noqa
examples = [
[
"demo/examples/coco.jpg",
"black pickup truck, pickup truck; blue sky, sky",
["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
],
[
"demo/examples/ade.jpg",
"luggage, suitcase, baggage;handbag",
["ADE (150 categories)"],
],
[
"demo/examples/ego4d.jpg",
"faucet, tap; kitchen paper, paper towels",
["COCO (133 categories)"],
],
]
def build_demo_classes_and_metadata(vocab, label_list):
extra_classes = []
if vocab:
for words in vocab.split(";"):
extra_classes.append([word.strip() for word in words.split(",")])
extra_colors = [random_color(rgb=True, maximum=1) for _ in range(len(extra_classes))]
demo_thing_classes = extra_classes
demo_stuff_classes = []
demo_thing_colors = extra_colors
demo_stuff_colors = []
if any("COCO" in label for label in label_list):
demo_thing_classes += COCO_THING_CLASSES
demo_stuff_classes += COCO_STUFF_CLASSES
demo_thing_colors += COCO_THING_COLORS
demo_stuff_colors += COCO_STUFF_COLORS
if any("ADE" in label for label in label_list):
demo_thing_classes += ADE_THING_CLASSES
demo_stuff_classes += ADE_STUFF_CLASSES
demo_thing_colors += ADE_THING_COLORS
demo_stuff_colors += ADE_STUFF_COLORS
if any("LVIS" in label for label in label_list):
demo_thing_classes += LVIS_CLASSES
demo_thing_colors += LVIS_COLORS
MetadataCatalog.pop("odise_demo_metadata", None)
demo_metadata = MetadataCatalog.get("odise_demo_metadata")
demo_metadata.thing_classes = [c[0] for c in demo_thing_classes]
demo_metadata.stuff_classes = [
*demo_metadata.thing_classes,
*[c[0] for c in demo_stuff_classes],
]
demo_metadata.thing_colors = demo_thing_colors
demo_metadata.stuff_colors = demo_thing_colors + demo_stuff_colors
demo_metadata.stuff_dataset_id_to_contiguous_id = {
idx: idx for idx in range(len(demo_metadata.stuff_classes))
}
demo_metadata.thing_dataset_id_to_contiguous_id = {
idx: idx for idx in range(len(demo_metadata.thing_classes))
}
demo_classes = demo_thing_classes + demo_stuff_classes
return demo_classes, demo_metadata
def inference(image_path, vocab, label_list):
logger.info("building class names")
demo_classes, demo_metadata = build_demo_classes_and_metadata(vocab, label_list)
with ExitStack() as stack:
inference_model = OpenPanopticInference(
model=model,
labels=demo_classes,
metadata=demo_metadata,
semantic_on=False,
instance_on=False,
panoptic_on=True,
)
stack.enter_context(inference_context(inference_model))
stack.enter_context(torch.no_grad())
demo = VisualizationDemo(inference_model, demo_metadata, aug)
img = utils.read_image(image_path, format="RGB")
_, visualized_output = demo.run_on_image(img)
return Image.fromarray(visualized_output.get_image())
with gr.Blocks(title=title) as demo:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
gr.Markdown(description)
input_components = []
output_components = []
with gr.Row():
output_image_gr = gr.outputs.Image(label="Panoptic Segmentation", type="pil")
output_components.append(output_image_gr)
with gr.Row().style(equal_height=True, mobile_collapse=True):
with gr.Column(scale=3, variant="panel") as input_component_column:
input_image_gr = gr.inputs.Image(type="filepath")
extra_vocab_gr = gr.inputs.Textbox(default="", label="Extra Vocabulary")
category_list_gr = gr.inputs.CheckboxGroup(
choices=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
default=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)"],
label="Category to use",
)
input_components.extend([input_image_gr, extra_vocab_gr, category_list_gr])
with gr.Column(scale=2):
examples_handler = gr.Examples(
examples=examples,
inputs=[c for c in input_components if not isinstance(c, gr.State)],
outputs=[c for c in output_components if not isinstance(c, gr.State)],
fn=inference,
cache_examples=torch.cuda.is_available(),
examples_per_page=5,
)
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit", variant="primary")
gr.Markdown(article)
submit_btn.click(
inference,
input_components,
output_components,
api_name="predict",
scroll_to_output=True,
)
clear_btn.click(
None,
[],
(input_components + output_components + [input_component_column]),
_js=f"""() => {json.dumps(
[component.cleared_value if hasattr(component, "cleared_value") else None
for component in input_components + output_components] + (
[gr.Column.update(visible=True)]
)
+ ([gr.Column.update(visible=False)])
)}
""",
)
demo.launch()