Spaces:
Sleeping
Sleeping
import pickle | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
import torchvision | |
def check_photo(name, photo): | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
input_tensor = preprocess(photo) | |
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# move the input and model to GPU for speed if available | |
if torch.cuda.is_available(): | |
input_batch = input_batch.to('cuda') | |
model.to('cuda') | |
with torch.no_grad(): | |
output = model(input_batch) | |
# Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes | |
print(name, output[0]) | |
# The output has unnormalized scores. To get probabilities, you can run a softmax on it. | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
print(name, probabilities) | |
pkl_filename = "pickle_model.pkl" | |
with open(pkl_filename, 'rb') as file: | |
model = pickle.load(file) | |
model.eval() | |
# sample execution (requires torchvision) | |
gates_photo = Image.open("gates500.jpg") | |
musk_photo = Image.open("mask.jpg") | |
bezos_photo = Image.open("bezos500.jpg") | |
zuker_photo = Image.open("zuckerberg500.jpg") | |
jobs_photo = Image.open("jobs500.jpg") | |
test_photos_dict = {'gates':gates_photo, 'musk':musk_photo, 'bezos':bezos_photo,'zuker': zuker_photo,'jobs': jobs_photo} | |
for name in test_photos_dict: | |
check_photo(name, test_photos_dict[name]) | |
# preprocess = transforms.Compose([ | |
# transforms.Resize(256), | |
# transforms.CenterCrop(224), | |
# transforms.ToTensor(), | |
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
# ]) | |
# input_tensor = preprocess(test_photos_list) | |
# input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model | |
# | |
# # move the input and model to GPU for speed if available | |
# if torch.cuda.is_available(): | |
# input_batch = input_batch.to('cuda') | |
# model.to('cuda') | |
# | |
# with torch.no_grad(): | |
# output = model(input_batch) | |
# # Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes | |
# print(output[0]) | |
# print(model) | |
# print(probabilities) |