import pickle import torch import torchvision.transforms as transforms from PIL import Image import torchvision def check_photo(name, photo): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(photo) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes print(name, output[0]) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) print(name, probabilities) pkl_filename = "pickle_model.pkl" with open(pkl_filename, 'rb') as file: model = pickle.load(file) model.eval() # sample execution (requires torchvision) gates_photo = Image.open("gates500.jpg") musk_photo = Image.open("mask.jpg") bezos_photo = Image.open("bezos500.jpg") zuker_photo = Image.open("zuckerberg500.jpg") jobs_photo = Image.open("jobs500.jpg") test_photos_dict = {'gates':gates_photo, 'musk':musk_photo, 'bezos':bezos_photo,'zuker': zuker_photo,'jobs': jobs_photo} for name in test_photos_dict: check_photo(name, test_photos_dict[name]) # preprocess = transforms.Compose([ # transforms.Resize(256), # transforms.CenterCrop(224), # transforms.ToTensor(), # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # ]) # input_tensor = preprocess(test_photos_list) # input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # # # move the input and model to GPU for speed if available # if torch.cuda.is_available(): # input_batch = input_batch.to('cuda') # model.to('cuda') # # with torch.no_grad(): # output = model(input_batch) # # Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes # print(output[0]) # print(model) # print(probabilities)