import pickle import torch import torchvision.transforms as transforms from PIL import Image import csv def preprocess_images(images): """ Preprocess image for the model. """ preprocess = transforms.Compose([ transforms.Resize([70, 70]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) images_tensor = [preprocess(image) for image in images] image_batch = torch.stack(images_tensor) return image_batch def output_to_names(output): """ Converts model outputs to category names names. """ with open('cat.csv') as file: reader = csv.reader(file) cat_list = list(reader)[0] names = [] for prediction in output: probabilities = torch.nn.functional.softmax(prediction, dim=0) index = probabilities.argmax() names.append(cat_list[index]) return names def check_photo(name, photo): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(photo) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # Tensor of shape 1000, with confidence scores over ImageNet's 1000 classes print(name, output[0]) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) print(name, probabilities) if __name__ == "__main__": pkl_filename = "pickle_model.pkl" with open(pkl_filename, 'rb') as file: model = pickle.load(file) model.eval() # sample execution (requires torchvision) gates_photo = Image.open("gates500.jpg") musk_photo = Image.open("mask.jpg") bezos_photo = Image.open("bezos500.jpg") zuker_photo = Image.open("zuckerberg500.jpg") jobs_photo = Image.open("jobs500.jpg") test_photos_dict = {'gates':gates_photo, 'musk':musk_photo, 'bezos':bezos_photo,'zuker': zuker_photo,'jobs': jobs_photo} for name in test_photos_dict: check_photo(name, test_photos_dict[name]) tensor = torch.tensor([[-1.8637, -1.6411, -1.5038, -2.9645, -1.8477, 6.5004], [-1.6067, -1.6597, -1.0925, 5.1295, -1.6491, -1.4739], [-0.2427, -0.6140, -1.1936, -2.1147, 4.8429, -2.0129]]) print(output_to_names(tensor))