Spaces:
Running
Running
Create trainer_manager.py
Browse files- trainer_manager.py +40 -0
trainer_manager.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# trainer_manager.py
|
2 |
+
from longtrainer.trainer import LongTrainer
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from config import CONNECTION_STRING, CHATGROQ_API_KEY, CUSTOM_PROMPT
|
6 |
+
|
7 |
+
def get_embeddings():
|
8 |
+
# Initialize HuggingFace embeddings with the specified model and parameters
|
9 |
+
model_name = "BAAI/bge-small-en"
|
10 |
+
model_kwargs = {"device": "cpu"}
|
11 |
+
encode_kwargs = {"normalize_embeddings": True}
|
12 |
+
embeddings = HuggingFaceEmbeddings(
|
13 |
+
model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
|
14 |
+
)
|
15 |
+
return embeddings
|
16 |
+
|
17 |
+
def get_llm():
|
18 |
+
if not CHATGROQ_API_KEY:
|
19 |
+
raise ValueError("CHATGROQ_API_KEY is not set.")
|
20 |
+
llm = ChatGroq(
|
21 |
+
model="llama-3.3-70b-versatile",
|
22 |
+
temperature=0,
|
23 |
+
max_tokens=1024,
|
24 |
+
api_key=CHATGROQ_API_KEY
|
25 |
+
)
|
26 |
+
return llm
|
27 |
+
|
28 |
+
embedding_model = get_embeddings()
|
29 |
+
llm = get_llm()
|
30 |
+
|
31 |
+
# Create a global LongTrainer instance
|
32 |
+
trainer_instance = LongTrainer(
|
33 |
+
mongo_endpoint=CONNECTION_STRING,
|
34 |
+
llm=llm,
|
35 |
+
embedding_model=embedding_model,
|
36 |
+
encrypt_chats=True
|
37 |
+
)
|
38 |
+
|
39 |
+
def get_trainer():
|
40 |
+
return trainer_instance
|