File size: 5,725 Bytes
c85864b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd4e1d
c85864b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#MonsterAPIClient.py

"""

Monster API Python client to connect to LLM models on monsterapi



Base URL: https://api.monsterapi.ai/v1/generate/{model}



Available models:

-----------------

    1. falcon-7b-instruct

    2. falcon-40b-instruct

    3. mpt-30B-instruct

    4. mpt-7b-instruct

    5. openllama-13b-base

    6. llama2-7b-chat



"""
import os
import time
import logging
import requests
from requests_toolbelt.multipart.encoder import MultipartEncoder

from typing import Optional, Literal, Union, List, Dict
from pydantic import BaseModel, Field

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class InputModel1(BaseModel):
    """

    Supports Following models: Falcon-40B-instruct, Falcon-7B-instruct, openllama-13b-base, llama2-7b-chat



    prompt	string	Prompt is a textual instruction for the model to produce an output.	Required

    top_k	integer	Top-k sampling helps improve quality by removing the tail and making it less likely to go off topic.	Optional

    (Default: 40)

    top_p	float	Top-p sampling helps generate more diverse and creative text by considering a broader range of tokens.	Optional

    (Default: 1.0)

    temp	float	The temperature influences the randomness of the next token predictions.	Optional

    (Default: 0.98)

    max_length	integer	The maximum length of the generated text.	Optional

    (Default: 256)

    repetition_penalty	float	The model uses this penalty to discourage the repetition of tokens in the output.	Optional

    (Default: 1.2)

    beam_size	integer	The beam size for beam search. A larger beam size results in better quality output, but slower generation times.	Optional

    (Default: 1)    

    """
    prompt: str
    top_k: int = 40
    top_p: float = Field(0.9, ge=0., le=1.)
    temp: float = Field(0.98, ge=0., le=1.)
    max_length: int = 256
    repetition_penalty: float = 1.2
    beam_size: int = 1


class InputModel2(BaseModel):
    """

    Supports Following models: MPT-30B-instruct, MPT-7B-instruct



    prompt:	string	Instruction is a textual command for the model to produce an output.	Required

    top_k	integer	Top-k sampling helps improve quality by removing the tail and making it less likely to go off topic.	Optional

    (Default: 40)

    top_p	float	Top-p sampling helps generate more diverse and creative text by considering a broader range of tokens.	Optional

    Allowed Range: 0 - 1

    (Default: 1.0)

    temp	float	Temperature is a parameter that controls the randomness of the model's output. The higher the temperature, the more random the output.	Optional

    (Default: 0.98)

    max_length	integer	Maximum length of the generated output.	Optional

    (Default: 256)

    """
    prompt: str
    top_k: int = 40
    top_p: float = Field(0.9, ge=0., le=1.)
    temp: float = Field(0.98, ge=0., le=1.)
    max_length: int = 256

MODELS_TO_DATAMODEL = {
            'falcon-7b-instruct': InputModel1,
            'falcon-40b-instruct': InputModel1,
            'mpt-30B-instruct': InputModel2,
            'mpt-7b-instruct': InputModel2,
            'openllama-13b-base': InputModel1,
            'llama2-7b-chat': InputModel1
        }


class MClient():
    def __init__(self):
        self.boundary = '---011000010111000001101001'
        self.auth_token = os.environ.get('MONSTER_API_KEY')
        self.headers = {
            "accept": "application/json",
            "content-type": f"multipart/form-data; boundary={self.boundary}",
            'Authorization': 'Bearer ' + self.auth_token}
        self.base_url = 'https://api.monsterapi.ai/v1'
        self.models_to_data_model = MODELS_TO_DATAMODEL
        self.mock = os.environ.get('MOCK_Runner', "True").lower() == "true"

    def get_response(self, model:Literal['falcon-20b-instruct', 'falcon-7b-instruct', 'mpt-30B-instruct', 'mpt-7B-instruct'], 

                     data: dict):
    
        if model not in self.models_to_data_model:
            raise ValueError(f"Invalid model: {model}!")

        dataModel = self.models_to_data_model[model](**data)
        url = f"{self.base_url}/generate/{model}"
        #url = self.base_url + model
        data = dataModel.dict()
        # convert all values into string
        for key, value in data.items():
            data[key] = str(value)
        multipart_data = MultipartEncoder(fields=data, boundary=self.boundary)
        response = requests.post(url, headers=self.headers, data=multipart_data)
        response.raise_for_status()
        return response.json()
    
    def get_status(self, process_id):
        # /v1/status/{process_id}
        url = f"{self.base_url}/status/{process_id}"
        response = requests.get(url, headers=self.headers)
        response.raise_for_status()
        return response.json()
    
    def wait_and_get_result(self, process_id):
        while True:
            status = self.get_status(process_id)
            if status['status'].lower() == 'completed':
                return status['result']
            elif status['status'].lower() == 'failed':
                raise RuntimeError(f"Process {process_id} failed!")
            else:
                if self.mock:
                    return 100*"Mock Output!" 
                logger.info(f"Process {process_id} is still running, status is {status['status']}. Waiting for 5 seconds...")
                time.sleep(1)

        
if __name__ == '__main__':
    client = MClient()
    response = client.get_response('falcon-7b-instruct', {"prompt": 'How to make a sandwich'})
    output = client.wait_and_get_result(response['process_id'])
    print(output)