import gradio as gr import requests from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor, as_completed from MonsterAPIClient import MClient from MonsterAPIClient import MODELS_TO_DATAMODEL client = MClient() # Available models list MODELS_TO_SERVE = ['llama2-7b-chat','mpt-7b-instruct','falcon-7b-instruct'] def generate_model_output(model: str, input_text: str, temp: float = 0.98) -> str: """ Generate output from a specific model. Parameters: model (str): The name of the model. input_text (str): The input prompt for the model. temp (float, optional): The temperature value for text generation. Defaults to 0.98. Returns: str: The generated output text. """ try: response = client.get_response(model, { "prompt": input_text, "temp": temp, }) output = client.wait_and_get_result(response['process_id']) return model, output['text'] except Exception as e: return model, f"Error occurred: {str(e)}" def generate_output(selected_models: list, input_text: str, temp: float = 0.98, available_models: list = MODELS_TO_SERVE) -> list: """ Generate outputs from selected models using Monster API. Parameters: selected_models (list): List of selected model names. input_text (str): The input prompt for the models. temp (float, optional): The temperature value for text generation. Defaults to 0.98. available_models (list, optional): List of available model names. Defaults to global variable. Returns: list: List of generated output texts corresponding to each model. """ outputs = {} with ThreadPoolExecutor() as executor: future_to_model = {executor.submit(generate_model_output, model, input_text, temp): model for model in selected_models} for future in tqdm(as_completed(future_to_model), total=len(selected_models)): model, output = future.result() outputs[model] = output ret_outputs = [] for model in available_models: if model not in outputs: ret_outputs.append("Model not selected!") else: ret_outputs.append(outputs[model]) return ret_outputs output_components = [gr.outputs.Textbox(label=model) for model in MODELS_TO_SERVE] checkboxes = gr.inputs.CheckboxGroup(MODELS_TO_SERVE, label="Select models to generate outputs:") textbox = gr.inputs.Textbox(label="Input Prompt") temp = gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.98, label="Temperature", step=0.01) input_text = gr.Interface( fn=generate_output, inputs=[ checkboxes, textbox, temp ], outputs=output_components, live=False, capture_session=True, title="LLM Evaluation powered by MonsterAPI", description="""This HuggingFace Space has been designed to help you evaluate the output of LLMs like Llama 2 7B, Falcon-7B and MPT-7B in parallel. These models are hosted on [MonsterAPI](https://monsterapi.ai/?utm_source=llm-evaluation&utm_medium=referral) - An AI infrastructure platform built for easily accessing AI models via scalable APIs and [finetuning LLMs](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm) at very low cost with our no-code implementation. MonsterAPI is powered by our low cost and highly scalable GPU computing platform - [Q Blocks](https://www.qblocks.cloud?utm_source=llm-evaluation&utm_medium=referral). These LLMs are accessible via scalable REST APIs. Checkout our [API documentation](https://documenter.getpostman.com/view/13759598/2s8ZDVZ3Yi) to integrate them in your AI powered applications.""", css="body {background-color: black}" ) # Launch the Gradio app input_text.launch()