import random import gradio as gr import requests from concurrent.futures import ThreadPoolExecutor from MonsterAPIClient import MClient from typing import Tuple client = MClient() def generate_model_output(model: str, input_text: str, neg_prompt: str, samples: int, steps: int, aspect_ratio: str, guidance_scale: float, random_seed: str) -> str: """ Generate output from a specific model. Parameters: model (str): The name of the model. input_text (str): Your input text prompt. neg_prompt (str): Negative text prompt. samples (int): No. of images to be generated. steps (int): Sampling steps per image. aspect_ratio (str): Aspect ratio of the generated image. guidance_scale (float): Prompt guidance scale. random_seed (str): Random number used to initialize the image generation. Returns: str: The generated output text or image URL. """ try: response = client.get_response(model, { "prompt": input_text, "negprompt": neg_prompt, "samples": samples, "steps": steps, "aspect_ratio": aspect_ratio, "guidance_scale": guidance_scale, "seed": random_seed, }) output = client.wait_and_get_result(response['process_id']) if 'output' in output: return output['output'] else: return "No output available." except Exception as e: return f"Error occurred: {str(e)}" def generate_output(input_text: str, neg_prompt: str, samples: int, steps: int, aspect_ratio: str, guidance_scale: float, random_seed: str): with ThreadPoolExecutor() as executor: # Schedule the function calls asynchronously future_sdxl_base = executor.submit(generate_model_output, 'sdxl-base', input_text, neg_prompt, samples, steps, aspect_ratio, guidance_scale, random_seed) future_txt2img = executor.submit(generate_model_output, 'txt2img', input_text, neg_prompt, samples, steps, aspect_ratio, guidance_scale, random_seed) # Get the results from the completed futures sdxl_base_output = future_sdxl_base.result() txt2img_output = future_txt2img.result() return [sdxl_base_output, txt2img_output] # Function to stitch input_components = [ gr.inputs.Textbox(label="Input Prompt"), gr.inputs.Textbox(label="Negative Prompt"), gr.inputs.Slider(label="No. of Images to Generate", minimum=1, maximum=2, default=1, step = 1), gr.inputs.Slider(label="Sampling Steps per Image", minimum=30, maximum=40, default=30, step = 1), gr.inputs.Dropdown(label="Aspect Ratio", choices=["square", "landscape", "portrait"], default="square"), gr.inputs.Slider(label="Prompt Guidance Scale", minimum=0.1, maximum=20.0, default=7.5), gr.inputs.Textbox(label="Random Seed", default=random.randint(0, 1000000)), ] output_component_sdxl_base = gr.Gallery(label="Stable Diffusion XL Output", type="pil", container = True) output_component_txt2img = gr.Gallery(label="Stable Diffusion V1.5 Output", type="pil", container = True) interface = gr.Interface( fn=generate_output, inputs=input_components, outputs=[output_component_sdxl_base, output_component_txt2img], live=False, capture_session=True, title="Stable Diffusion Evaluation powered by MonsterAPI", description="""This HuggingFace Space lets you compare Stable-Diffusion V1.5 vs SDXL image quality. These models are hosted on [MonsterAPI](https://monsterapi.ai/?utm_source=sdxl-evaluation&utm_medium=referral) - An AI infrastructure platform for accessing LLMs via low-cost APIs and [no-code LLM finetuning](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm). MonsterAPI is powered by our low cost and highly scalable GPU computing platform - [Q Blocks](https://www.qblocks.cloud?utm_source=sdxl-evaluation&utm_medium=referral). Checkout our [SDXL API documentation](https://documenter.getpostman.com/view/13759598/2s8ZDVZ3Yi#37336bc8-7a4b-41fe-b253-6a6f7ba63c82) to get started.""", css="body {background-color: black}" ) # Launch the Gradio app interface.launch()