Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoModelForCausalLM | |
import matplotlib | |
matplotlib.use("Agg") # Use Agg backend for non-interactive plotting | |
os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True | |
model = AutoModelForCausalLM.from_pretrained( | |
"vikhyatk/moondream-next", | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
device_map={"": "cuda"}, | |
revision="69420e0c6596863b4f0059e365fadc5cb388e8fd" | |
) | |
def visualize_gaze_multi(face_boxes, gaze_points, image=None, show_plot=True): | |
"""Visualization function with reduced whitespace""" | |
# Calculate figure size based on image aspect ratio | |
if image is not None: | |
height, width = image.shape[:2] | |
aspect_ratio = width / height | |
fig_height = 6 # Base height | |
fig_width = fig_height * aspect_ratio | |
else: | |
width, height = 800, 600 | |
fig_width, fig_height = 10, 8 | |
# Create figure with tight layout | |
fig = plt.figure(figsize=(fig_width, fig_height)) | |
ax = fig.add_subplot(111) | |
if image is not None: | |
ax.imshow(image) | |
else: | |
ax.set_facecolor("#1a1a1a") | |
fig.patch.set_facecolor("#1a1a1a") | |
colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes))) | |
for face_box, gaze_point, color in zip(face_boxes, gaze_points, colors): | |
hex_color = "#{:02x}{:02x}{:02x}".format( | |
int(color[0] * 255), int(color[1] * 255), int(color[2] * 255) | |
) | |
x, y, width_box, height_box = face_box | |
gaze_x, gaze_y = gaze_point | |
face_center_x = x + width_box / 2 | |
face_center_y = y + height_box / 2 | |
face_rect = plt.Rectangle( | |
(x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2 | |
) | |
ax.add_patch(face_rect) | |
points = 50 | |
alphas = np.linspace(0.8, 0, points) | |
x_points = np.linspace(face_center_x, gaze_x, points) | |
y_points = np.linspace(face_center_y, gaze_y, points) | |
for i in range(points - 1): | |
ax.plot( | |
[x_points[i], x_points[i + 1]], | |
[y_points[i], y_points[i + 1]], | |
color=hex_color, | |
alpha=alphas[i], | |
linewidth=4, | |
) | |
ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5) | |
ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6) | |
# Set plot limits and remove axes | |
ax.set_xlim(0, width) | |
ax.set_ylim(height, 0) | |
ax.set_aspect("equal") | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
# Remove padding around the plot | |
plt.subplots_adjust(left=0, right=1, bottom=0, top=1) | |
return fig | |
def process_image(input_image): | |
try: | |
# Convert to PIL Image if needed | |
if isinstance(input_image, np.ndarray): | |
pil_image = Image.fromarray(input_image) | |
else: | |
pil_image = input_image | |
# Get image encoding | |
enc_image = model.encode_image(pil_image) | |
# Detect faces | |
faces = model.detect(enc_image, "face")["objects"] | |
if not faces: | |
return None, "No faces detected in the image." | |
# Process each face | |
face_boxes = [] | |
gaze_points = [] | |
for face in faces: | |
face_center = ( | |
(face["x_min"] + face["x_max"]) / 2, | |
(face["y_min"] + face["y_max"]) / 2, | |
) | |
gaze = model.detect_gaze(enc_image, face_center) | |
if gaze is None: | |
continue | |
face_box = ( | |
face["x_min"] * pil_image.width, | |
face["y_min"] * pil_image.height, | |
(face["x_max"] - face["x_min"]) * pil_image.width, | |
(face["y_max"] - face["y_min"]) * pil_image.height, | |
) | |
gaze_point = ( | |
gaze["x"] * pil_image.width, | |
gaze["y"] * pil_image.height, | |
) | |
face_boxes.append(face_box) | |
gaze_points.append(gaze_point) | |
# Create visualization | |
image_array = np.array(pil_image) | |
fig = visualize_gaze_multi( | |
face_boxes, gaze_points, image=image_array, show_plot=False | |
) | |
return fig, f"Detected {len(faces)} faces." | |
except Exception as e: | |
return None, f"Error processing image: {str(e)}" | |
with gr.Blocks(title="Moondream Gaze Detection") as app: | |
gr.Markdown("# π Moondream Gaze Detection") | |
gr.Markdown("Upload an image to detect faces and visualize their gaze directions.") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(label="Input Image", type="pil") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Status") | |
output_plot = gr.Plot(label="Visualization") | |
input_image.change( | |
fn=process_image, inputs=[input_image], outputs=[output_plot, output_text] | |
) | |
gr.Examples( | |
examples=["demo1.jpg", "demo2.jpg", "demo3.jpg", "demo4.jpg"], | |
inputs=input_image, | |
) | |
if __name__ == "__main__": | |
app.launch() | |