from pydantic import BaseModel from .ConfigEnv import config from fastapi.middleware.cors import CORSMiddleware from langchain.llms import Clarifai from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from TextGen import app class Generate(BaseModel): text:str def generate_text(prompt: str): if prompt == "": return {"detail": "Please provide a prompt."} else: prompt = PromptTemplate(template=prompt, input_variables=['Prompt']) llm = Clarifai( pat = config.CLARIFAI_PAT, user_id = config.USER_ID, app_id = config.APP_ID, model_id = config.MODEL_ID, model_version_id=config.MODEL_VERSION_ID, ) llmchain = LLMChain( prompt=prompt, llm=llm ) llm_response = llmchain.run({"Prompt": prompt}) return Generate(text=llm_response) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/", tags=["Home"]) def api_home(): return {'detail': 'Welcome to FastAPI TextGen Tutorial!'} @app.post("/api/generate", summary="Generate text from prompt", tags=["Generate"], response_model=Generate) def inference(input_prompt: str): return generate_text(prompt=input_prompt)