Spaces:
Runtime error
Runtime error
from typing import * | |
from numbers import Number | |
import torch | |
import torch.nn.functional as F | |
from ._helpers import batched | |
__all__ = [ | |
'perspective', | |
'perspective_from_fov', | |
'perspective_from_fov_xy', | |
'intrinsics_from_focal_center', | |
'intrinsics_from_fov', | |
'intrinsics_from_fov_xy', | |
'view_look_at', | |
'extrinsics_look_at', | |
'perspective_to_intrinsics', | |
'intrinsics_to_perspective', | |
'extrinsics_to_view', | |
'view_to_extrinsics', | |
'normalize_intrinsics', | |
'crop_intrinsics', | |
'pixel_to_uv', | |
'pixel_to_ndc', | |
'uv_to_pixel', | |
'project_depth', | |
'depth_buffer_to_linear', | |
'project_gl', | |
'project_cv', | |
'unproject_gl', | |
'unproject_cv', | |
'skew_symmetric', | |
'rotation_matrix_from_vectors', | |
'euler_axis_angle_rotation', | |
'euler_angles_to_matrix', | |
'matrix_to_euler_angles', | |
'matrix_to_quaternion', | |
'quaternion_to_matrix', | |
'matrix_to_axis_angle', | |
'axis_angle_to_matrix', | |
'axis_angle_to_quaternion', | |
'quaternion_to_axis_angle', | |
'slerp', | |
'interpolate_extrinsics', | |
'interpolate_view', | |
'extrinsics_to_essential', | |
'to4x4', | |
'rotation_matrix_2d', | |
'rotate_2d', | |
'translate_2d', | |
'scale_2d', | |
'apply_2d', | |
] | |
def perspective( | |
fov_y: Union[float, torch.Tensor], | |
aspect: Union[float, torch.Tensor], | |
near: Union[float, torch.Tensor], | |
far: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Get OpenGL perspective matrix | |
Args: | |
fov_y (float | torch.Tensor): field of view in y axis | |
aspect (float | torch.Tensor): aspect ratio | |
near (float | torch.Tensor): near plane to clip | |
far (float | torch.Tensor): far plane to clip | |
Returns: | |
(torch.Tensor): [..., 4, 4] perspective matrix | |
""" | |
N = fov_y.shape[0] | |
ret = torch.zeros((N, 4, 4), dtype=fov_y.dtype, device=fov_y.device) | |
ret[:, 0, 0] = 1. / (torch.tan(fov_y / 2) * aspect) | |
ret[:, 1, 1] = 1. / (torch.tan(fov_y / 2)) | |
ret[:, 2, 2] = (near + far) / (near - far) | |
ret[:, 2, 3] = 2. * near * far / (near - far) | |
ret[:, 3, 2] = -1. | |
return ret | |
def perspective_from_fov( | |
fov: Union[float, torch.Tensor], | |
width: Union[int, torch.Tensor], | |
height: Union[int, torch.Tensor], | |
near: Union[float, torch.Tensor], | |
far: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Get OpenGL perspective matrix from field of view in largest dimension | |
Args: | |
fov (float | torch.Tensor): field of view in largest dimension | |
width (int | torch.Tensor): image width | |
height (int | torch.Tensor): image height | |
near (float | torch.Tensor): near plane to clip | |
far (float | torch.Tensor): far plane to clip | |
Returns: | |
(torch.Tensor): [..., 4, 4] perspective matrix | |
""" | |
fov_y = 2 * torch.atan(torch.tan(fov / 2) * height / torch.maximum(width, height)) | |
aspect = width / height | |
return perspective(fov_y, aspect, near, far) | |
def perspective_from_fov_xy( | |
fov_x: Union[float, torch.Tensor], | |
fov_y: Union[float, torch.Tensor], | |
near: Union[float, torch.Tensor], | |
far: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Get OpenGL perspective matrix from field of view in x and y axis | |
Args: | |
fov_x (float | torch.Tensor): field of view in x axis | |
fov_y (float | torch.Tensor): field of view in y axis | |
near (float | torch.Tensor): near plane to clip | |
far (float | torch.Tensor): far plane to clip | |
Returns: | |
(torch.Tensor): [..., 4, 4] perspective matrix | |
""" | |
aspect = torch.tan(fov_x / 2) / torch.tan(fov_y / 2) | |
return perspective(fov_y, aspect, near, far) | |
def intrinsics_from_focal_center( | |
fx: Union[float, torch.Tensor], | |
fy: Union[float, torch.Tensor], | |
cx: Union[float, torch.Tensor], | |
cy: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Get OpenCV intrinsics matrix | |
Args: | |
focal_x (float | torch.Tensor): focal length in x axis | |
focal_y (float | torch.Tensor): focal length in y axis | |
cx (float | torch.Tensor): principal point in x axis | |
cy (float | torch.Tensor): principal point in y axis | |
Returns: | |
(torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix | |
""" | |
N = fx.shape[0] | |
ret = torch.zeros((N, 3, 3), dtype=fx.dtype, device=fx.device) | |
zeros, ones = torch.zeros(N, dtype=fx.dtype, device=fx.device), torch.ones(N, dtype=fx.dtype, device=fx.device) | |
ret = torch.stack([fx, zeros, cx, zeros, fy, cy, zeros, zeros, ones], dim=-1).unflatten(-1, (3, 3)) | |
return ret | |
def intrinsics_from_fov( | |
fov_max: Union[float, torch.Tensor] = None, | |
fov_min: Union[float, torch.Tensor] = None, | |
fov_x: Union[float, torch.Tensor] = None, | |
fov_y: Union[float, torch.Tensor] = None, | |
width: Union[int, torch.Tensor] = None, | |
height: Union[int, torch.Tensor] = None, | |
) -> torch.Tensor: | |
""" | |
Get normalized OpenCV intrinsics matrix from given field of view. | |
You can provide either fov_max, fov_min, fov_x or fov_y | |
Args: | |
width (int | torch.Tensor): image width | |
height (int | torch.Tensor): image height | |
fov_max (float | torch.Tensor): field of view in largest dimension | |
fov_min (float | torch.Tensor): field of view in smallest dimension | |
fov_x (float | torch.Tensor): field of view in x axis | |
fov_y (float | torch.Tensor): field of view in y axis | |
Returns: | |
(torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix | |
""" | |
if fov_max is not None: | |
fx = torch.maximum(width, height) / width / (2 * torch.tan(fov_max / 2)) | |
fy = torch.maximum(width, height) / height / (2 * torch.tan(fov_max / 2)) | |
elif fov_min is not None: | |
fx = torch.minimum(width, height) / width / (2 * torch.tan(fov_min / 2)) | |
fy = torch.minimum(width, height) / height / (2 * torch.tan(fov_min / 2)) | |
elif fov_x is not None and fov_y is not None: | |
fx = 1 / (2 * torch.tan(fov_x / 2)) | |
fy = 1 / (2 * torch.tan(fov_y / 2)) | |
elif fov_x is not None: | |
fx = 1 / (2 * torch.tan(fov_x / 2)) | |
fy = fx * width / height | |
elif fov_y is not None: | |
fy = 1 / (2 * torch.tan(fov_y / 2)) | |
fx = fy * height / width | |
cx = 0.5 | |
cy = 0.5 | |
ret = intrinsics_from_focal_center(fx, fy, cx, cy) | |
return ret | |
def intrinsics_from_fov_xy( | |
fov_x: Union[float, torch.Tensor], | |
fov_y: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Get OpenCV intrinsics matrix from field of view in x and y axis | |
Args: | |
fov_x (float | torch.Tensor): field of view in x axis | |
fov_y (float | torch.Tensor): field of view in y axis | |
Returns: | |
(torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix | |
""" | |
focal_x = 0.5 / torch.tan(fov_x / 2) | |
focal_y = 0.5 / torch.tan(fov_y / 2) | |
cx = cy = 0.5 | |
return intrinsics_from_focal_center(focal_x, focal_y, cx, cy) | |
def view_look_at( | |
eye: torch.Tensor, | |
look_at: torch.Tensor, | |
up: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Get OpenGL view matrix looking at something | |
Args: | |
eye (torch.Tensor): [..., 3] the eye position | |
look_at (torch.Tensor): [..., 3] the position to look at | |
up (torch.Tensor): [..., 3] head up direction (y axis in screen space). Not necessarily othogonal to view direction | |
Returns: | |
(torch.Tensor): [..., 4, 4], view matrix | |
""" | |
N = eye.shape[0] | |
z = eye - look_at | |
x = torch.cross(up, z, dim=-1) | |
y = torch.cross(z, x, dim=-1) | |
# x = torch.cross(y, z, dim=-1) | |
x = x / x.norm(dim=-1, keepdim=True) | |
y = y / y.norm(dim=-1, keepdim=True) | |
z = z / z.norm(dim=-1, keepdim=True) | |
R = torch.stack([x, y, z], dim=-2) | |
t = -torch.matmul(R, eye[..., None]) | |
ret = torch.zeros((N, 4, 4), dtype=eye.dtype, device=eye.device) | |
ret[:, :3, :3] = R | |
ret[:, :3, 3] = t[:, :, 0] | |
ret[:, 3, 3] = 1. | |
return ret | |
def extrinsics_look_at( | |
eye: torch.Tensor, | |
look_at: torch.Tensor, | |
up: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
Get OpenCV extrinsics matrix looking at something | |
Args: | |
eye (torch.Tensor): [..., 3] the eye position | |
look_at (torch.Tensor): [..., 3] the position to look at | |
up (torch.Tensor): [..., 3] head up direction (-y axis in screen space). Not necessarily othogonal to view direction | |
Returns: | |
(torch.Tensor): [..., 4, 4], extrinsics matrix | |
""" | |
N = eye.shape[0] | |
z = look_at - eye | |
x = torch.cross(-up, z, dim=-1) | |
y = torch.cross(z, x, dim=-1) | |
# x = torch.cross(y, z, dim=-1) | |
x = x / x.norm(dim=-1, keepdim=True) | |
y = y / y.norm(dim=-1, keepdim=True) | |
z = z / z.norm(dim=-1, keepdim=True) | |
R = torch.stack([x, y, z], dim=-2) | |
t = -torch.matmul(R, eye[..., None]) | |
ret = torch.zeros((N, 4, 4), dtype=eye.dtype, device=eye.device) | |
ret[:, :3, :3] = R | |
ret[:, :3, 3] = t[:, :, 0] | |
ret[:, 3, 3] = 1. | |
return ret | |
def perspective_to_intrinsics( | |
perspective: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
OpenGL perspective matrix to OpenCV intrinsics | |
Args: | |
perspective (torch.Tensor): [..., 4, 4] OpenGL perspective matrix | |
Returns: | |
(torch.Tensor): shape [..., 3, 3] OpenCV intrinsics | |
""" | |
assert torch.allclose(perspective[:, [0, 1, 3], 3], 0), "The perspective matrix is not a projection matrix" | |
ret = torch.tensor([[0.5, 0., 0.5], [0., -0.5, 0.5], [0., 0., 1.]], dtype=perspective.dtype, device=perspective.device) \ | |
return ret / ret[:, 2, 2, None, None] | |
def intrinsics_to_perspective( | |
intrinsics: torch.Tensor, | |
near: Union[float, torch.Tensor], | |
far: Union[float, torch.Tensor], | |
) -> torch.Tensor: | |
""" | |
OpenCV intrinsics to OpenGL perspective matrix | |
Args: | |
intrinsics (torch.Tensor): [..., 3, 3] OpenCV intrinsics matrix | |
near (float | torch.Tensor): [...] near plane to clip | |
far (float | torch.Tensor): [...] far plane to clip | |
Returns: | |
(torch.Tensor): [..., 4, 4] OpenGL perspective matrix | |
""" | |
N = intrinsics.shape[0] | |
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 1, 1] | |
cx, cy = intrinsics[:, 0, 2], intrinsics[:, 1, 2] | |
ret = torch.zeros((N, 4, 4), dtype=intrinsics.dtype, device=intrinsics.device) | |
ret[:, 0, 0] = 2 * fx | |
ret[:, 1, 1] = 2 * fy | |
ret[:, 0, 2] = -2 * cx + 1 | |
ret[:, 1, 2] = 2 * cy - 1 | |
ret[:, 2, 2] = (near + far) / (near - far) | |
ret[:, 2, 3] = 2. * near * far / (near - far) | |
ret[:, 3, 2] = -1. | |
return ret | |
def extrinsics_to_view( | |
extrinsics: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
OpenCV camera extrinsics to OpenGL view matrix | |
Args: | |
extrinsics (torch.Tensor): [..., 4, 4] OpenCV camera extrinsics matrix | |
Returns: | |
(torch.Tensor): [..., 4, 4] OpenGL view matrix | |
""" | |
return extrinsics * torch.tensor([1, -1, -1, 1], dtype=extrinsics.dtype, device=extrinsics.device)[:, None] | |
def view_to_extrinsics( | |
view: torch.Tensor | |
) -> torch.Tensor: | |
""" | |
OpenGL view matrix to OpenCV camera extrinsics | |
Args: | |
view (torch.Tensor): [..., 4, 4] OpenGL view matrix | |
Returns: | |
(torch.Tensor): [..., 4, 4] OpenCV camera extrinsics matrix | |
""" | |
return view * torch.tensor([1, -1, -1, 1], dtype=view.dtype, device=view.device)[:, None] | |
def normalize_intrinsics( | |
intrinsics: torch.Tensor, | |
width: Union[int, torch.Tensor], | |
height: Union[int, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Normalize camera intrinsics(s) to uv space | |
Args: | |
intrinsics (torch.Tensor): [..., 3, 3] camera intrinsics(s) to normalize | |
width (int | torch.Tensor): [...] image width(s) | |
height (int | torch.Tensor): [...] image height(s) | |
Returns: | |
(torch.Tensor): [..., 3, 3] normalized camera intrinsics(s) | |
""" | |
zeros = torch.zeros_like(width) | |
ones = torch.ones_like(width) | |
transform = torch.stack([ | |
1 / width, zeros, 0.5 / width, | |
zeros, 1 / height, 0.5 / height, | |
zeros, zeros, ones | |
]).reshape(*zeros.shape, 3, 3).to(intrinsics) | |
return transform @ intrinsics | |
def crop_intrinsics( | |
intrinsics: torch.Tensor, | |
width: Union[int, torch.Tensor], | |
height: Union[int, torch.Tensor], | |
left: Union[int, torch.Tensor], | |
top: Union[int, torch.Tensor], | |
crop_width: Union[int, torch.Tensor], | |
crop_height: Union[int, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Evaluate the new intrinsics(s) after crop the image: cropped_img = img[top:top+crop_height, left:left+crop_width] | |
Args: | |
intrinsics (torch.Tensor): [..., 3, 3] camera intrinsics(s) to crop | |
width (int | torch.Tensor): [...] image width(s) | |
height (int | torch.Tensor): [...] image height(s) | |
left (int | torch.Tensor): [...] left crop boundary | |
top (int | torch.Tensor): [...] top crop boundary | |
crop_width (int | torch.Tensor): [...] crop width | |
crop_height (int | torch.Tensor): [...] crop height | |
Returns: | |
(torch.Tensor): [..., 3, 3] cropped camera intrinsics(s) | |
""" | |
zeros = torch.zeros_like(width) | |
ones = torch.ones_like(width) | |
transform = torch.stack([ | |
width / crop_width, zeros, -left / crop_width, | |
zeros, height / crop_height, -top / crop_height, | |
zeros, zeros, ones | |
]).reshape(*zeros.shape, 3, 3).to(intrinsics) | |
return transform @ intrinsics | |
def pixel_to_uv( | |
pixel: torch.Tensor, | |
width: Union[int, torch.Tensor], | |
height: Union[int, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Args: | |
pixel (torch.Tensor): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
width (int | torch.Tensor): [...] image width(s) | |
height (int | torch.Tensor): [...] image height(s) | |
Returns: | |
(torch.Tensor): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
""" | |
if not torch.is_floating_point(pixel): | |
pixel = pixel.float() | |
uv = (pixel + 0.5) / torch.stack([width, height], dim=-1).to(pixel) | |
return uv | |
def uv_to_pixel( | |
uv: torch.Tensor, | |
width: Union[int, torch.Tensor], | |
height: Union[int, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Args: | |
uv (torch.Tensor): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
width (int | torch.Tensor): [...] image width(s) | |
height (int | torch.Tensor): [...] image height(s) | |
Returns: | |
(torch.Tensor): [..., 2] pixel coordinrates defined in uv space, the range is (0, 1) | |
""" | |
pixel = uv * torch.stack([width, height], dim=-1).to(uv) - 0.5 | |
return pixel | |
def pixel_to_ndc( | |
pixel: torch.Tensor, | |
width: Union[int, torch.Tensor], | |
height: Union[int, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Args: | |
pixel (torch.Tensor): [..., 2] pixel coordinrates defined in image space, x range is (0, W - 1), y range is (0, H - 1) | |
width (int | torch.Tensor): [...] image width(s) | |
height (int | torch.Tensor): [...] image height(s) | |
Returns: | |
(torch.Tensor): [..., 2] pixel coordinrates defined in ndc space, the range is (-1, 1) | |
""" | |
if not torch.is_floating_point(pixel): | |
pixel = pixel.float() | |
ndc = (pixel + 0.5) / (torch.stack([width, height], dim=-1).to(pixel) * torch.tensor([2, -2], dtype=pixel.dtype, device=pixel.device)) \ | |
+ torch.tensor([-1, 1], dtype=pixel.dtype, device=pixel.device) | |
return ndc | |
def project_depth( | |
depth: torch.Tensor, | |
near: Union[float, torch.Tensor], | |
far: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Project linear depth to depth value in screen space | |
Args: | |
depth (torch.Tensor): [...] depth value | |
near (float | torch.Tensor): [...] near plane to clip | |
far (float | torch.Tensor): [...] far plane to clip | |
Returns: | |
(torch.Tensor): [..., 1] depth value in screen space, value ranging in [0, 1] | |
""" | |
return (far - near * far / depth) / (far - near) | |
def depth_buffer_to_linear( | |
depth: torch.Tensor, | |
near: Union[float, torch.Tensor], | |
far: Union[float, torch.Tensor] | |
) -> torch.Tensor: | |
""" | |
Linearize depth value to linear depth | |
Args: | |
depth (torch.Tensor): [...] screen depth value, ranging in [0, 1] | |
near (float | torch.Tensor): [...] near plane to clip | |
far (float | torch.Tensor): [...] far plane to clip | |
Returns: | |
(torch.Tensor): [...] linear depth | |
""" | |
return near * far / (far - (far - near) * depth) | |
def project_gl( | |
points: torch.Tensor, | |
model: torch.Tensor = None, | |
view: torch.Tensor = None, | |
perspective: torch.Tensor = None | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Project 3D points to 2D following the OpenGL convention (except for row major matrice) | |
Args: | |
points (torch.Tensor): [..., N, 3 or 4] 3D points to project, if the last | |
dimension is 4, the points are assumed to be in homogeneous coordinates | |
model (torch.Tensor): [..., 4, 4] model matrix | |
view (torch.Tensor): [..., 4, 4] view matrix | |
perspective (torch.Tensor): [..., 4, 4] perspective matrix | |
Returns: | |
scr_coord (torch.Tensor): [..., N, 3] screen space coordinates, value ranging in [0, 1]. | |
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest | |
linear_depth (torch.Tensor): [..., N] linear depth | |
""" | |
assert perspective is not None, "perspective matrix is required" | |
if points.shape[-1] == 3: | |
points = torch.cat([points, torch.ones_like(points[..., :1])], dim=-1) | |
mvp = perspective if perspective is not None else torch.eye(4).to(points) | |
if view is not None: | |
mvp = mvp @ view | |
if model is not None: | |
mvp = mvp @ model | |
clip_coord = points @ mvp.transpose(-1, -2) | |
ndc_coord = clip_coord[..., :3] / clip_coord[..., 3:] | |
scr_coord = ndc_coord * 0.5 + 0.5 | |
linear_depth = clip_coord[..., 3] | |
return scr_coord, linear_depth | |
def project_cv( | |
points: torch.Tensor, | |
extrinsics: torch.Tensor = None, | |
intrinsics: torch.Tensor = None | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Project 3D points to 2D following the OpenCV convention | |
Args: | |
points (torch.Tensor): [..., N, 3] or [..., N, 4] 3D points to project, if the last | |
dimension is 4, the points are assumed to be in homogeneous coordinates | |
extrinsics (torch.Tensor): [..., 4, 4] extrinsics matrix | |
intrinsics (torch.Tensor): [..., 3, 3] intrinsics matrix | |
Returns: | |
uv_coord (torch.Tensor): [..., N, 2] uv coordinates, value ranging in [0, 1]. | |
The origin (0., 0.) is corresponding to the left & top | |
linear_depth (torch.Tensor): [..., N] linear depth | |
""" | |
assert intrinsics is not None, "intrinsics matrix is required" | |
if points.shape[-1] == 3: | |
points = torch.cat([points, torch.ones_like(points[..., :1])], dim=-1) | |
if extrinsics is not None: | |
points = points @ extrinsics.transpose(-1, -2) | |
points = points[..., :3] @ intrinsics.transpose(-2, -1) | |
uv_coord = points[..., :2] / points[..., 2:] | |
linear_depth = points[..., 2] | |
return uv_coord, linear_depth | |
def unproject_gl( | |
screen_coord: torch.Tensor, | |
model: torch.Tensor = None, | |
view: torch.Tensor = None, | |
perspective: torch.Tensor = None | |
) -> torch.Tensor: | |
""" | |
Unproject screen space coordinates to 3D view space following the OpenGL convention (except for row major matrice) | |
Args: | |
screen_coord (torch.Tensor): [... N, 3] screen space coordinates, value ranging in [0, 1]. | |
The origin (0., 0., 0.) is corresponding to the left & bottom & nearest | |
model (torch.Tensor): [..., 4, 4] model matrix | |
view (torch.Tensor): [..., 4, 4] view matrix | |
perspective (torch.Tensor): [..., 4, 4] perspective matrix | |
Returns: | |
points (torch.Tensor): [..., N, 3] 3d points | |
""" | |
assert perspective is not None, "perspective matrix is required" | |
ndc_xy = screen_coord * 2 - 1 | |
clip_coord = torch.cat([ndc_xy, torch.ones_like(ndc_xy[..., :1])], dim=-1) | |
transform = perspective | |
if view is not None: | |
transform = transform @ view | |
if model is not None: | |
transform = transform @ model | |
transform = torch.inverse(transform) | |
points = clip_coord @ transform.transpose(-1, -2) | |
points = points[..., :3] / points[..., 3:] | |
return points | |
def unproject_cv( | |
uv_coord: torch.Tensor, | |
depth: torch.Tensor, | |
extrinsics: torch.Tensor = None, | |
intrinsics: torch.Tensor = None | |
) -> torch.Tensor: | |
""" | |
Unproject uv coordinates to 3D view space following the OpenCV convention | |
Args: | |
uv_coord (torch.Tensor): [..., N, 2] uv coordinates, value ranging in [0, 1]. | |
The origin (0., 0.) is corresponding to the left & top | |
depth (torch.Tensor): [..., N] depth value | |
extrinsics (torch.Tensor): [..., 4, 4] extrinsics matrix | |
intrinsics (torch.Tensor): [..., 3, 3] intrinsics matrix | |
Returns: | |
points (torch.Tensor): [..., N, 3] 3d points | |
""" | |
assert intrinsics is not None, "intrinsics matrix is required" | |
points = torch.cat([uv_coord, torch.ones_like(uv_coord[..., :1])], dim=-1) | |
points = points @ torch.inverse(intrinsics).transpose(-2, -1) | |
points = points * depth[..., None] | |
if extrinsics is not None: | |
points = torch.cat([points, torch.ones_like(points[..., :1])], dim=-1) | |
points = (points @ torch.inverse(extrinsics).transpose(-2, -1))[..., :3] | |
return points | |
def euler_axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = torch.cos(angle) | |
sin = torch.sin(angle) | |
one = torch.ones_like(angle) | |
zero = torch.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
elif axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
elif axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
else: | |
raise ValueError("letter must be either X, Y or Z.") | |
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str = 'XYZ') -> torch.Tensor: | |
""" | |
Convert rotations given as Euler angles in radians to rotation matrices. | |
Args: | |
euler_angles: Euler angles in radians as tensor of shape (..., 3), XYZ | |
convention: permutation of "X", "Y" or "Z", representing the order of Euler rotations to apply. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: | |
raise ValueError("Invalid input euler angles.") | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
matrices = [ | |
euler_axis_angle_rotation(c, euler_angles[..., 'XYZ'.index(c)]) | |
for c in convention | |
] | |
# return functools.reduce(torch.matmul, matrices) | |
return matrices[2] @ matrices[1] @ matrices[0] | |
def skew_symmetric(v: torch.Tensor): | |
"Skew symmetric matrix from a 3D vector" | |
assert v.shape[-1] == 3, "v must be 3D" | |
x, y, z = v.unbind(dim=-1) | |
zeros = torch.zeros_like(x) | |
return torch.stack([ | |
zeros, -z, y, | |
z, zeros, -x, | |
-y, x, zeros, | |
], dim=-1).reshape(*v.shape[:-1], 3, 3) | |
def rotation_matrix_from_vectors(v1: torch.Tensor, v2: torch.Tensor): | |
"Rotation matrix that rotates v1 to v2" | |
I = torch.eye(3).to(v1) | |
v1 = F.normalize(v1, dim=-1) | |
v2 = F.normalize(v2, dim=-1) | |
v = torch.cross(v1, v2, dim=-1) | |
c = torch.sum(v1 * v2, dim=-1) | |
K = skew_symmetric(v) | |
R = I + K + (1 / (1 + c))[None, None] * (K @ K) | |
return R | |
def _angle_from_tan( | |
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool | |
) -> torch.Tensor: | |
""" | |
Extract the first or third Euler angle from the two members of | |
the matrix which are positive constant times its sine and cosine. | |
Args: | |
axis: Axis label "X" or "Y or "Z" for the angle we are finding. | |
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the | |
convention. | |
data: Rotation matrices as tensor of shape (..., 3, 3). | |
horizontal: Whether we are looking for the angle for the third axis, | |
which means the relevant entries are in the same row of the | |
rotation matrix. If not, they are in the same column. | |
tait_bryan: Whether the first and third axes in the convention differ. | |
Returns: | |
Euler Angles in radians for each matrix in data as a tensor | |
of shape (...). | |
""" | |
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] | |
if horizontal: | |
i2, i1 = i1, i2 | |
even = (axis + other_axis) in ["XY", "YZ", "ZX"] | |
if horizontal == even: | |
return torch.atan2(data[..., i1], data[..., i2]) | |
if tait_bryan: | |
return torch.atan2(-data[..., i2], data[..., i1]) | |
return torch.atan2(data[..., i2], -data[..., i1]) | |
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to Euler angles in radians. | |
NOTE: The composition order eg. `XYZ` means `Rz * Ry * Rx` (like blender), instead of `Rx * Ry * Rz` (like pytorch3d) | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
convention: Convention string of three uppercase letters. | |
Returns: | |
Euler angles in radians as tensor of shape (..., 3), in the order of XYZ (like blender), instead of convention (like pytorch3d) | |
""" | |
if not all(c in 'XYZ' for c in convention) or not all(c in convention for c in 'XYZ'): | |
raise ValueError(f"Invalid convention {convention}.") | |
if not matrix.shape[-2:] == (3, 3): | |
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
i0 = 'XYZ'.index(convention[0]) | |
i2 = 'XYZ'.index(convention[2]) | |
tait_bryan = i0 != i2 | |
if tait_bryan: | |
central_angle = torch.asin(matrix[..., i2, i0] * (-1.0 if i2 - i0 in [-1, 2] else 1.0)) | |
else: | |
central_angle = torch.acos(matrix[..., i2, i2]) | |
# Angles in composition order | |
o = [ | |
_angle_from_tan( | |
convention[0], convention[1], matrix[..., i2, :], True, tait_bryan | |
), | |
central_angle, | |
_angle_from_tan( | |
convention[2], convention[1], matrix[..., i0], False, tait_bryan | |
), | |
] | |
return torch.stack([o[convention.index(c)] for c in 'XYZ'], -1) | |
def axis_angle_to_matrix(axis_angle: torch.Tensor, eps: float = 1e-12) -> torch.Tensor: | |
"""Convert axis-angle representation (rotation vector) to rotation matrix, whose direction is the axis of rotation and length is the angle of rotation | |
Args: | |
axis_angle (torch.Tensor): shape (..., 3), axis-angle vcetors | |
Returns: | |
torch.Tensor: shape (..., 3, 3) The rotation matrices for the given axis-angle parameters | |
""" | |
batch_shape = axis_angle.shape[:-1] | |
device, dtype = axis_angle.device, axis_angle.dtype | |
angle = torch.norm(axis_angle + eps, dim=-1, keepdim=True) | |
axis = axis_angle / angle | |
cos = torch.cos(angle)[..., None, :] | |
sin = torch.sin(angle)[..., None, :] | |
rx, ry, rz = torch.split(axis, 3, dim=-1) | |
zeros = torch.zeros((*batch_shape, 1), dtype=dtype, device=device) | |
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=-1).view((*batch_shape, 3, 3)) | |
ident = torch.eye(3, dtype=dtype, device=device) | |
rot_mat = ident + sin * K + (1 - cos) * torch.matmul(K, K) | |
return rot_mat | |
def matrix_to_axis_angle(rot_mat: torch.Tensor, eps: float = 1e-12) -> torch.Tensor: | |
"""Convert a batch of 3x3 rotation matrices to axis-angle representation (rotation vector) | |
Args: | |
rot_mat (torch.Tensor): shape (..., 3, 3), the rotation matrices to convert | |
Returns: | |
torch.Tensor: shape (..., 3), the axis-angle vectors corresponding to the given rotation matrices | |
""" | |
quat = matrix_to_quaternion(rot_mat) | |
axis_angle = quaternion_to_axis_angle(quat, eps=eps) | |
return axis_angle | |
def quaternion_to_axis_angle(quaternion: torch.Tensor, eps: float = 1e-12) -> torch.Tensor: | |
"""Convert a batch of quaternions (w, x, y, z) to axis-angle representation (rotation vector) | |
Args: | |
quaternion (torch.Tensor): shape (..., 4), the quaternions to convert | |
Returns: | |
torch.Tensor: shape (..., 3), the axis-angle vectors corresponding to the given quaternions | |
""" | |
assert quaternion.shape[-1] == 4 | |
norm = torch.norm(quaternion[..., 1:], dim=-1, keepdim=True) | |
axis = quaternion[..., 1:] / norm.clamp(min=eps) | |
angle = 2 * torch.atan2(norm, quaternion[..., 0:1]) | |
return angle * axis | |
def axis_angle_to_quaternion(axis_angle: torch.Tensor, eps: float = 1e-12) -> torch.Tensor: | |
"""Convert axis-angle representation (rotation vector) to quaternion (w, x, y, z) | |
Args: | |
axis_angle (torch.Tensor): shape (..., 3), axis-angle vcetors | |
Returns: | |
torch.Tensor: shape (..., 4) The quaternions for the given axis-angle parameters | |
""" | |
axis = F.normalize(axis_angle, dim=-1, eps=eps) | |
angle = torch.norm(axis_angle, dim=-1, keepdim=True) | |
quat = torch.cat([torch.cos(angle / 2), torch.sin(angle / 2) * axis], dim=-1) | |
return quat | |
def matrix_to_quaternion(rot_mat: torch.Tensor, eps: float = 1e-12) -> torch.Tensor: | |
"""Convert 3x3 rotation matrix to quaternion (w, x, y, z) | |
Args: | |
rot_mat (torch.Tensor): shape (..., 3, 3), the rotation matrices to convert | |
Returns: | |
torch.Tensor: shape (..., 4), the quaternions corresponding to the given rotation matrices | |
""" | |
# Extract the diagonal and off-diagonal elements of the rotation matrix | |
m00, m01, m02, m10, m11, m12, m20, m21, m22 = rot_mat.flatten(-2).unbind(dim=-1) | |
diag = torch.diagonal(rot_mat, dim1=-2, dim2=-1) | |
M = torch.tensor([ | |
[1, 1, 1], | |
[1, -1, -1], | |
[-1, 1, -1], | |
[-1, -1, 1] | |
], dtype=rot_mat.dtype, device=rot_mat.device) | |
wxyz = (1 + diag @ M.transpose(-1, -2)).clamp_(0).sqrt().mul(0.5) | |
_, max_idx = wxyz.max(dim=-1) | |
xw = torch.sign(m21 - m12) | |
yw = torch.sign(m02 - m20) | |
zw = torch.sign(m10 - m01) | |
yz = torch.sign(m21 + m12) | |
xz = torch.sign(m02 + m20) | |
xy = torch.sign(m01 + m10) | |
ones = torch.ones_like(xw) | |
sign = torch.where( | |
max_idx[..., None] == 0, | |
torch.stack([ones, xw, yw, zw], dim=-1), | |
torch.where( | |
max_idx[..., None] == 1, | |
torch.stack([xw, ones, xy, xz], dim=-1), | |
torch.where( | |
max_idx[..., None] == 2, | |
torch.stack([yw, xy, ones, yz], dim=-1), | |
torch.stack([zw, xz, yz, ones], dim=-1) | |
) | |
) | |
) | |
quat = sign * wxyz | |
quat = F.normalize(quat, dim=-1, eps=eps) | |
return quat | |
def quaternion_to_matrix(quaternion: torch.Tensor, eps: float = 1e-12) -> torch.Tensor: | |
"""Converts a batch of quaternions (w, x, y, z) to rotation matrices | |
Args: | |
quaternion (torch.Tensor): shape (..., 4), the quaternions to convert | |
Returns: | |
torch.Tensor: shape (..., 3, 3), the rotation matrices corresponding to the given quaternions | |
""" | |
assert quaternion.shape[-1] == 4 | |
quaternion = F.normalize(quaternion, dim=-1, eps=eps) | |
w, x, y, z = quaternion.unbind(dim=-1) | |
zeros = torch.zeros_like(w) | |
I = torch.eye(3, dtype=quaternion.dtype, device=quaternion.device) | |
xyz = quaternion[..., 1:] | |
A = xyz[..., :, None] * xyz[..., None, :] - I * (xyz ** 2).sum(dim=-1)[..., None, None] | |
B = torch.stack([ | |
zeros, -z, y, | |
z, zeros, -x, | |
-y, x, zeros | |
], dim=-1).unflatten(-1, (3, 3)) | |
rot_mat = I + 2 * (A + w[..., None, None] * B) | |
return rot_mat | |
def slerp(rot_mat_1: torch.Tensor, rot_mat_2: torch.Tensor, t: Union[Number, torch.Tensor]) -> torch.Tensor: | |
"""Spherical linear interpolation between two rotation matrices | |
Args: | |
rot_mat_1 (torch.Tensor): shape (..., 3, 3), the first rotation matrix | |
rot_mat_2 (torch.Tensor): shape (..., 3, 3), the second rotation matrix | |
t (torch.Tensor): scalar or shape (...,), the interpolation factor | |
Returns: | |
torch.Tensor: shape (..., 3, 3), the interpolated rotation matrix | |
""" | |
assert rot_mat_1.shape[-2:] == (3, 3) | |
rot_vec_1 = matrix_to_axis_angle(rot_mat_1) | |
rot_vec_2 = matrix_to_axis_angle(rot_mat_2) | |
if isinstance(t, Number): | |
t = torch.tensor(t, dtype=rot_mat_1.dtype, device=rot_mat_1.device) | |
rot_vec = (1 - t[..., None]) * rot_vec_1 + t[..., None] * rot_vec_2 | |
rot_mat = axis_angle_to_matrix(rot_vec) | |
return rot_mat | |
def interpolate_extrinsics(ext1: torch.Tensor, ext2: torch.Tensor, t: Union[Number, torch.Tensor]) -> torch.Tensor: | |
"""Interpolate extrinsics between two camera poses. Linear interpolation for translation, spherical linear interpolation for rotation. | |
Args: | |
ext1 (torch.Tensor): shape (..., 4, 4), the first camera pose | |
ext2 (torch.Tensor): shape (..., 4, 4), the second camera pose | |
t (torch.Tensor): scalar or shape (...,), the interpolation factor | |
Returns: | |
torch.Tensor: shape (..., 4, 4), the interpolated camera pose | |
""" | |
return torch.inverse(interpolate_transform(torch.inverse(ext1), torch.inverse(ext2), t)) | |
def interpolate_view(view1: torch.Tensor, view2: torch.Tensor, t: Union[Number, torch.Tensor]): | |
"""Interpolate view matrices between two camera poses. Linear interpolation for translation, spherical linear interpolation for rotation. | |
Args: | |
ext1 (torch.Tensor): shape (..., 4, 4), the first camera pose | |
ext2 (torch.Tensor): shape (..., 4, 4), the second camera pose | |
t (torch.Tensor): scalar or shape (...,), the interpolation factor | |
Returns: | |
torch.Tensor: shape (..., 4, 4), the interpolated camera pose | |
""" | |
return interpolate_extrinsics(view1, view2, t) | |
def interpolate_transform(transform1: torch.Tensor, transform2: torch.Tensor, t: Union[Number, torch.Tensor]): | |
assert transform1.shape[-2:] == (4, 4) and transform2.shape[-2:] == (4, 4) | |
if isinstance(t, Number): | |
t = torch.tensor(t, dtype=transform1.dtype, device=transform1.device) | |
pos = (1 - t[..., None]) * transform1[..., :3, 3] + t[..., None] * transform2[..., :3, 3] | |
rot = slerp(transform1[..., :3, :3], transform2[..., :3, :3], t) | |
transform = torch.cat([rot, pos[..., None]], dim=-1) | |
transform = torch.cat([ext, torch.tensor([0, 0, 0, 1], dtype=transform.dtype, device=transform.device).expand_as(transform[..., :1, :])], dim=-2) | |
return transform | |
def extrinsics_to_essential(extrinsics: torch.Tensor): | |
""" | |
extrinsics matrix `[[R, t] [0, 0, 0, 1]]` such that `x' = R (x - t)` to essential matrix such that `x' E x = 0` | |
Args: | |
extrinsics (torch.Tensor): [..., 4, 4] extrinsics matrix | |
Returns: | |
(torch.Tensor): [..., 3, 3] essential matrix | |
""" | |
assert extrinsics.shape[-2:] == (4, 4) | |
R = extrinsics[..., :3, :3] | |
t = extrinsics[..., :3, 3] | |
zeros = torch.zeros_like(t) | |
t_x = torch.stack([ | |
zeros, -t[..., 2], t[..., 1], | |
t[..., 2], zeros, -t[..., 0], | |
-t[..., 1], t[..., 0], zeros | |
]).reshape(*t.shape[:-1], 3, 3) | |
return R @ t_x | |
def to4x4(R: torch.Tensor, t: torch.Tensor): | |
""" | |
Compose rotation matrix and translation vector to 4x4 transformation matrix | |
Args: | |
R (torch.Tensor): [..., 3, 3] rotation matrix | |
t (torch.Tensor): [..., 3] translation vector | |
Returns: | |
(torch.Tensor): [..., 4, 4] transformation matrix | |
""" | |
assert R.shape[-2:] == (3, 3) | |
assert t.shape[-1] == 3 | |
assert R.shape[:-2] == t.shape[:-1] | |
return torch.cat([ | |
torch.cat([R, t[..., None]], dim=-1), | |
torch.tensor([0, 0, 0, 1], dtype=R.dtype, device=R.device).expand(*R.shape[:-2], 1, 4) | |
], dim=-2) | |
def rotation_matrix_2d(theta: Union[float, torch.Tensor]): | |
""" | |
2x2 matrix for 2D rotation | |
Args: | |
theta (float | torch.Tensor): rotation angle in radians, arbitrary shape (...,) | |
Returns: | |
(torch.Tensor): (..., 2, 2) rotation matrix | |
""" | |
if isinstance(theta, float): | |
theta = torch.tensor(theta) | |
return torch.stack([ | |
torch.cos(theta), -torch.sin(theta), | |
torch.sin(theta), torch.cos(theta), | |
], dim=-1).unflatten(-1, (2, 2)) | |
def rotate_2d(theta: Union[float, torch.Tensor], center: torch.Tensor = None): | |
""" | |
3x3 matrix for 2D rotation around a center | |
``` | |
[[Rxx, Rxy, tx], | |
[Ryx, Ryy, ty], | |
[0, 0, 1]] | |
``` | |
Args: | |
theta (float | torch.Tensor): rotation angle in radians, arbitrary shape (...,) | |
center (torch.Tensor): rotation center, arbitrary shape (..., 2). Default to (0, 0) | |
Returns: | |
(torch.Tensor): (..., 3, 3) transformation matrix | |
""" | |
if isinstance(theta, float): | |
theta = torch.tensor(theta) | |
if center is not None: | |
theta = theta.to(center) | |
if center is None: | |
center = torch.zeros(2).to(theta).expand(*theta.shape, -1) | |
R = rotation_matrix_2d(theta) | |
return torch.cat([ | |
torch.cat([ | |
R, | |
center[..., :, None] - R @ center[..., :, None], | |
], dim=-1), | |
torch.tensor([[0, 0, 1]], dtype=center.dtype, device=center.device).expand(*center.shape[:-1], -1, -1), | |
], dim=-2) | |
def translate_2d(translation: torch.Tensor): | |
""" | |
Translation matrix for 2D translation | |
``` | |
[[1, 0, tx], | |
[0, 1, ty], | |
[0, 0, 1]] | |
``` | |
Args: | |
translation (torch.Tensor): translation vector, arbitrary shape (..., 2) | |
Returns: | |
(torch.Tensor): (..., 3, 3) transformation matrix | |
""" | |
return torch.cat([ | |
torch.cat([ | |
torch.eye(2, dtype=translation.dtype, device=translation.device).expand(*translation.shape[:-1], -1, -1), | |
translation[..., None], | |
], dim=-1), | |
torch.tensor([[0, 0, 1]], dtype=translation.dtype, device=translation.device).expand(*translation.shape[:-1], -1, -1), | |
], dim=-2) | |
def scale_2d(scale: Union[float, torch.Tensor], center: torch.Tensor = None): | |
""" | |
Scale matrix for 2D scaling | |
``` | |
[[s, 0, tx], | |
[0, s, ty], | |
[0, 0, 1]] | |
``` | |
Args: | |
scale (float | torch.Tensor): scale factor, arbitrary shape (...,) | |
center (torch.Tensor): scale center, arbitrary shape (..., 2). Default to (0, 0) | |
Returns: | |
(torch.Tensor): (..., 3, 3) transformation matrix | |
""" | |
if isinstance(scale, float): | |
scale = torch.tensor(scale) | |
if center is not None: | |
scale = scale.to(center) | |
if center is None: | |
center = torch.zeros(2, dtype=scale.dtype, device=scale.device).expand(*scale.shape, -1) | |
return torch.cat([ | |
torch.cat([ | |
scale * torch.eye(2, dtype=scale.dtype, device=scale.device).expand(*scale.shape[:-1], -1, -1), | |
center[..., :, None] - center[..., :, None] * scale[..., None, None], | |
], dim=-1), | |
torch.tensor([[0, 0, 1]], dtype=scale.dtype, device=scale.device).expand(*center.shape[:-1], -1, -1), | |
], dim=-2) | |
def apply_2d(transform: torch.Tensor, points: torch.Tensor): | |
""" | |
Apply (3x3 or 2x3) 2D affine transformation to points | |
``` | |
p = R @ p + t | |
``` | |
Args: | |
transform (torch.Tensor): (..., 2 or 3, 3) transformation matrix | |
points (torch.Tensor): (..., N, 2) points to transform | |
Returns: | |
(torch.Tensor): (..., N, 2) transformed points | |
""" | |
assert transform.shape[-2:] == (3, 3) or transform.shape[-2:] == (2, 3), "transform must be 3x3 or 2x3" | |
assert points.shape[-1] == 2, "points must be 2D" | |
return points @ transform[..., :2, :2].mT + transform[..., :2, None, 2] |