# https://github.com/anthropics/anthropic-cookbook/blob/main/third_party/Brave/web_search_using_brave.ipynb import asyncio import html import json import os from typing import List from anthropic import Anthropic import requests import streamlit as st from googleapiclient.discovery import build st.title("Qiitaに聞いた!!") if "client" not in st.session_state: st.session_state.client = Anthropic( api_key=os.environ.get("ANTHROPIC_API_KEY"), ) client = st.session_state.client # 検索クエリを生成する関数 def generate_search_queries(question: str) -> List[str]: """ Google 検索エンジン用の検索クエリを生成する """ GENERATE_QUERIES = """ User question: {{question}} Format: {"queries": ["query_1", "query_2", "query_3"]} """ response = client.messages.create( max_tokens=1024, system="You are an expert at generating search queries for the Google search engine. Generate two search queries that are relevant to this question in Japanese. Output only valid JSON.", messages=[ { "role": "user", "content": [ { "type": "text", "text": GENERATE_QUERIES.replace("{{question}}", question), } ], } ], temperature=0, model="claude-3-haiku-20240307", ) search_queries = response.content[0].text search_queries = json.loads(search_queries) return search_queries # Qiitaを検索する関数 def search_qiita(search_query: str) -> list: """ 指定された検索クエリでQiitaを検索する """ service = build("customsearch", "v1", developerKey=os.environ.get("GOOGLE_API_KEY")) cse = service.cse() res = cse.list( q=f"{search_query} site:qiita.com", cx=os.environ.get("GOOGLE_CSE_ID"), num=3, ).execute() documents = list( map( lambda x: { "title": x["title"], "link": x["link"], "snippet": x["snippet"], }, res["items"], ) ) return documents # 検索結果にマークダウンを追加する非同期関数 async def add_markdown(search_result: dict) -> dict: """ 検索結果にマークダウンを追加する """ url = search_result["link"] response = requests.get(f"{url}.md") markdown = response.text search_result["markdown"] = html.escape(markdown) return search_result # 検索結果をXML形式のドキュメントに変換する関数 def create_xml_documents(documents: list) -> str: """ 検索結果をXML形式のドキュメントに変換する """ xml_documents = "" xml_doc = list( map( lambda x: f'{x["link"]}{x["markdown"]}', documents, ) ) xml_documents = f"{''.join(xml_doc)}" return xml_documents # 質問に対する回答を生成する関数 def generate_answer(question: str, documents: dict): """ 検索結果から質問に対する回答を生成する """ xml_docs = create_xml_documents(documents=documents) ANSWER_QUESTION = f"""I have provided you with the following search results: {xml_docs} Please answer the user's question using only information from the search results. Keep your answer concise. Answer is olways in Japanese! User's question: {question} """ response = client.messages.create( max_tokens=1024, messages=[ { "role": "user", "content": [ { "type": "text", "text": ANSWER_QUESTION, } ], } ], temperature=0.1, model="claude-3-haiku-20240307", ) return response.content[0].text # メイン関数 async def main(): with st.form("Form"): question = st.text_input("質問") if st.form_submit_button("質問する"): with st.status("処理中...", expanded=True) as status: search_queries = generate_search_queries(question=question) st.write("検索クエリ: " + str(search_queries["queries"])) documents = [] for search_query in search_queries["queries"]: search_results = search_qiita(search_query=search_query) result = await asyncio.gather( *[add_markdown(x) for x in search_results] ) documents.extend(result) st.write("検索完了") st.write("回答生成中...") answer = generate_answer(question=question, documents=documents) status.update(label="complete!", state="complete", expanded=False) st.markdown(answer) st.divider() st.markdown("参照ドキュメント") for document in documents: st.markdown( f'[{document["title"]}]({document["link"]}) by {document["link"].split("/")[3]}' ) if __name__ == "__main__": asyncio.run(main())