Spaces:
Runtime error
Runtime error
#Importing all the necessary packages | |
import nltk | |
import soundfile | |
import librosa | |
import torch | |
import gradio as gr | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
nltk.download("punkt") | |
## | |
token_value = "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" | |
#Loading the pre-trained model and the tokenizer | |
model_name = "moro23/wav2vec-large-xls-r-300-ha-colab_4" | |
#tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name, use_auth_token=token_value) | |
tokenizer = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token_value) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token_value) | |
def load_data(input_file): | |
speech , sample_rate = librosa.load(input_file) | |
#make it 1-D | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
#Resampling the audio at 16KHz | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate, 16000) | |
return speech | |
def correct_casing(input_sentence): | |
sentences = nltk.sent_tokenize(input_sentence) | |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
def asr_transcript(input_file): | |
speech = load_data(input_file) | |
#Tokenize | |
input_dict = tokenizer(speech, return_tensors="pt", sampling_rate=16000, padding=True) | |
#Take logits | |
logits = model(input_dict.input_values).logits | |
#Take argmax | |
predicted_ids = torch.argmax(logits, dim=-1)[0] | |
#Get the words from predicted word ids | |
transcription = tokenizer.decode(predicted_ids) | |
#Correcting the letter casing | |
transcription = correct_casing(transcription.lower()) | |
return transcription | |
################### Gradio Web APP ################################ | |
hf_writer = gr.HuggingFaceDatasetSaver(token_value, "Hausa-ASR-flags") | |
title = "Hausa Automatic Speech Recognition" | |
examples = [["Sample/sample1.mp3"], ["Sample/sample2.mp3"], ["Sample/sample3.mp3"]] | |
Input = gr.Audio(source="microphone", type="filepath", label="Please Record Your Voice") | |
Output = gr.Textbox(label="Hausa Script") | |
description = "This application displays transcribed text for given audio input" | |
demo = gr.Interface(fn = asr_transcript, inputs = Input, outputs = Output, title = title, flagging_options=["incorrect", "worst", "ambiguous"], | |
allow_flagging="manual",flagging_callback=hf_writer,description= description) | |
demo.launch(share=True) |