moro23's picture
Update app.py
daabb0b
#Importing all the necessary packages
import nltk
import soundfile
import librosa
import torch
import gradio as gr
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
nltk.download("punkt")
##
token_value = "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"
#Loading the pre-trained model and the tokenizer
model_name = "moro23/wav2vec-large-xls-r-300-ha-colab_4"
#tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name, use_auth_token=token_value)
tokenizer = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token_value)
model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token_value)
def load_data(input_file):
speech , sample_rate = librosa.load(input_file)
#make it 1-D
if len(speech.shape) > 1:
speech = speech[:,0] + speech[:,1]
#Resampling the audio at 16KHz
if sample_rate !=16000:
speech = librosa.resample(speech, sample_rate, 16000)
return speech
def correct_casing(input_sentence):
sentences = nltk.sent_tokenize(input_sentence)
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
def asr_transcript(input_file):
speech = load_data(input_file)
#Tokenize
input_dict = tokenizer(speech, return_tensors="pt", sampling_rate=16000, padding=True)
#Take logits
logits = model(input_dict.input_values).logits
#Take argmax
predicted_ids = torch.argmax(logits, dim=-1)[0]
#Get the words from predicted word ids
transcription = tokenizer.decode(predicted_ids)
#Correcting the letter casing
transcription = correct_casing(transcription.lower())
return transcription
################### Gradio Web APP ################################
hf_writer = gr.HuggingFaceDatasetSaver(token_value, "Hausa-ASR-flags")
title = "Hausa Automatic Speech Recognition"
examples = [["Sample/sample1.mp3"], ["Sample/sample2.mp3"], ["Sample/sample3.mp3"]]
Input = gr.Audio(source="microphone", type="filepath", label="Please Record Your Voice")
Output = gr.Textbox(label="Hausa Script")
description = "This application displays transcribed text for given audio input"
demo = gr.Interface(fn = asr_transcript, inputs = Input, outputs = Output, title = title, flagging_options=["incorrect", "worst", "ambiguous"],
allow_flagging="manual",flagging_callback=hf_writer,description= description)
demo.launch(share=True)