#Importing all the necessary packages import nltk import soundfile import librosa import torch import gradio as gr from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC nltk.download("punkt") ## token_value = "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" #Loading the pre-trained model and the tokenizer model_name = "moro23/wav2vec-large-xls-r-300-ha-colab_4" #tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name, use_auth_token=token_value) tokenizer = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token_value) model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token_value) def load_data(input_file): speech , sample_rate = librosa.load(input_file) #make it 1-D if len(speech.shape) > 1: speech = speech[:,0] + speech[:,1] #Resampling the audio at 16KHz if sample_rate !=16000: speech = librosa.resample(speech, sample_rate, 16000) return speech def correct_casing(input_sentence): sentences = nltk.sent_tokenize(input_sentence) return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) def asr_transcript(input_file): speech = load_data(input_file) #Tokenize input_dict = tokenizer(speech, return_tensors="pt", sampling_rate=16000, padding=True) #Take logits logits = model(input_dict.input_values).logits #Take argmax predicted_ids = torch.argmax(logits, dim=-1)[0] #Get the words from predicted word ids transcription = tokenizer.decode(predicted_ids) #Correcting the letter casing transcription = correct_casing(transcription.lower()) return transcription ################### Gradio Web APP ################################ hf_writer = gr.HuggingFaceDatasetSaver(token_value, "Hausa-ASR-flags") title = "Hausa Automatic Speech Recognition" examples = [["Sample/sample1.mp3"], ["Sample/sample2.mp3"], ["Sample/sample3.mp3"]] Input = gr.Audio(source="microphone", type="filepath", label="Please Record Your Voice") Output = gr.Textbox(label="Hausa Script") description = "This application displays transcribed text for given audio input" demo = gr.Interface(fn = asr_transcript, inputs = Input, outputs = Output, title = title, flagging_options=["incorrect", "worst", "ambiguous"], allow_flagging="manual",flagging_callback=hf_writer,description= description) demo.launch(share=True)