## libraries for data preprocessing import numpy as np import pandas as pd ## libraries for training dl models import tensorflow as tf from tensorflow import keras ## libraries for reading audio files import librosa as lib import gradio as gr ## lets load the model model = keras.models.load_model('heartbeatsound_classification.h5') def loading_sound_file(sound_file, sr=22050, duration=10): input_length = sr * duration X, sr = lib.load(sound_file, sr=sr, duration=duration) dur = lib.get_duration(y=X, sr=sr) # # pad audio file same duration # if (round(dur) < duration): # print ("fixing audio lenght :", file_name) # y = lib.util.fix_length(X, input_length) # extract normalized mfcc feature from data mfccs = np.mean(lib.feature.mfcc(y=X, sr=sr, n_mfcc=25).T,axis=0) data = np.array(mfccs).reshape([-1,1]) return data def heart_signal_classification(data): X = loading_sound_file(data) pred = model.predict(X) result = pred[0].argmax() ## lets create our labels labels = { 0: 'Artifact', 1: 'Murmur', 2: 'Normal' } label = labels[pred[0].argmax()] return label ################### Gradio Web APP ################################ title = "Heart Signal Classification App" Input = gr.Audio(sources=["upload"], type="filepath") Output1 = gr.Textbox(label="Type Of Heart Signal") description = "Type Of Signal: Artifact, Murmur, Normal" iface = gr.Interface(fn=heart_signal_classification, inputs=Input, outputs=Output1, title=title, description=description) iface.launch(inline=False)