Spaces:
Sleeping
Sleeping
Optimized app.py with on-demand model loading and lighter models
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from audio_processing import process_audio
|
3 |
from transformers import pipeline
|
4 |
import spaces
|
5 |
import torch
|
@@ -7,41 +7,27 @@ import logging
|
|
7 |
import traceback
|
8 |
import sys
|
9 |
|
10 |
-
# Set up logging
|
11 |
logging.basicConfig(
|
12 |
level=logging.INFO,
|
13 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
14 |
handlers=[
|
15 |
-
logging.StreamHandler(sys.stdout)
|
16 |
-
logging.FileHandler('app.log')
|
17 |
]
|
18 |
)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
# Check if CUDA is available
|
22 |
-
cuda_available = torch.cuda.is_available()
|
23 |
-
device = "cuda" if cuda_available else "cpu"
|
24 |
-
logger.info(f"Using device: {device}")
|
25 |
-
|
26 |
-
# Load Whisper model
|
27 |
-
# print("Loading Whisper model...")
|
28 |
-
# try:
|
29 |
-
# load_models() # Load Whisper model
|
30 |
-
# except Exception as e:
|
31 |
-
# logger.error(f"Error loading Whisper model: {str(e)}")
|
32 |
-
# raise
|
33 |
-
|
34 |
-
print("Whisper model loaded successfully.")
|
35 |
-
|
36 |
def load_summarization_model():
|
37 |
logger.info("Loading summarization model...")
|
38 |
try:
|
|
|
39 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=0 if cuda_available else -1)
|
|
|
|
|
40 |
except Exception as e:
|
41 |
logger.warning(f"Failed to load summarization model on GPU. Falling back to CPU. Error: {str(e)}")
|
42 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
43 |
-
|
44 |
-
|
45 |
|
46 |
def process_with_fallback(func, *args, **kwargs):
|
47 |
try:
|
@@ -51,7 +37,6 @@ def process_with_fallback(func, *args, **kwargs):
|
|
51 |
logger.error(traceback.format_exc())
|
52 |
if "CUDA" in str(e) or "GPU" in str(e):
|
53 |
logger.info("Falling back to CPU processing...")
|
54 |
-
# Modify kwargs to force CPU processing
|
55 |
kwargs['use_gpu'] = False
|
56 |
return func(*args, **kwargs)
|
57 |
else:
|
@@ -59,24 +44,58 @@ def process_with_fallback(func, *args, **kwargs):
|
|
59 |
|
60 |
@spaces.GPU(duration=60)
|
61 |
def transcribe_audio(audio_file, translate, model_size, use_diarization):
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
@spaces.GPU(duration=60)
|
65 |
def summarize_text(text):
|
66 |
-
|
67 |
try:
|
|
|
68 |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
|
|
|
|
69 |
except Exception as e:
|
70 |
-
logger.error(f"
|
71 |
logger.error(traceback.format_exc())
|
72 |
-
|
73 |
-
return summary
|
74 |
|
75 |
@spaces.GPU(duration=60)
|
76 |
def process_and_summarize(audio_file, translate, model_size, use_diarization, do_summarize):
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# Main interface
|
82 |
with gr.Blocks() as iface:
|
@@ -105,8 +124,8 @@ with gr.Blocks() as iface:
|
|
105 |
gr.Markdown(
|
106 |
f"""
|
107 |
## System Information
|
108 |
-
- Device: {
|
109 |
-
- CUDA Available: {"Yes" if
|
110 |
|
111 |
## ZeroGPU Support
|
112 |
This application supports ZeroGPU for Hugging Face Spaces pro users.
|
|
|
1 |
import gradio as gr
|
2 |
+
from audio_processing import process_audio
|
3 |
from transformers import pipeline
|
4 |
import spaces
|
5 |
import torch
|
|
|
7 |
import traceback
|
8 |
import sys
|
9 |
|
|
|
10 |
logging.basicConfig(
|
11 |
level=logging.INFO,
|
12 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
13 |
handlers=[
|
14 |
+
logging.StreamHandler(sys.stdout)
|
|
|
15 |
]
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def load_summarization_model():
|
20 |
logger.info("Loading summarization model...")
|
21 |
try:
|
22 |
+
cuda_available = torch.cuda.is_available()
|
23 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=0 if cuda_available else -1)
|
24 |
+
logger.info(f"Summarization model loaded successfully on {'GPU' if cuda_available else 'CPU'}")
|
25 |
+
return summarizer
|
26 |
except Exception as e:
|
27 |
logger.warning(f"Failed to load summarization model on GPU. Falling back to CPU. Error: {str(e)}")
|
28 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
29 |
+
logger.info("Summarization model loaded successfully on CPU")
|
30 |
+
return summarizer
|
31 |
|
32 |
def process_with_fallback(func, *args, **kwargs):
|
33 |
try:
|
|
|
37 |
logger.error(traceback.format_exc())
|
38 |
if "CUDA" in str(e) or "GPU" in str(e):
|
39 |
logger.info("Falling back to CPU processing...")
|
|
|
40 |
kwargs['use_gpu'] = False
|
41 |
return func(*args, **kwargs)
|
42 |
else:
|
|
|
44 |
|
45 |
@spaces.GPU(duration=60)
|
46 |
def transcribe_audio(audio_file, translate, model_size, use_diarization):
|
47 |
+
logger.info(f"Starting transcription: translate={translate}, model_size={model_size}, use_diarization={use_diarization}")
|
48 |
+
try:
|
49 |
+
result = process_with_fallback(process_audio, audio_file, translate=translate, model_size=model_size, use_diarization=use_diarization)
|
50 |
+
logger.info("Transcription completed successfully")
|
51 |
+
return result
|
52 |
+
except Exception as e:
|
53 |
+
logger.error(f"Transcription failed: {str(e)}")
|
54 |
+
raise gr.Error(f"Transcription failed: {str(e)}")
|
55 |
|
56 |
@spaces.GPU(duration=60)
|
57 |
def summarize_text(text):
|
58 |
+
logger.info("Starting text summarization")
|
59 |
try:
|
60 |
+
summarizer = load_summarization_model()
|
61 |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
62 |
+
logger.info("Summarization completed successfully")
|
63 |
+
return summary
|
64 |
except Exception as e:
|
65 |
+
logger.error(f"Summarization failed: {str(e)}")
|
66 |
logger.error(traceback.format_exc())
|
67 |
+
return "Error occurred during summarization. Please try again."
|
|
|
68 |
|
69 |
@spaces.GPU(duration=60)
|
70 |
def process_and_summarize(audio_file, translate, model_size, use_diarization, do_summarize):
|
71 |
+
logger.info(f"Starting process_and_summarize: translate={translate}, model_size={model_size}, use_diarization={use_diarization}, do_summarize={do_summarize}")
|
72 |
+
try:
|
73 |
+
language_segments, final_segments = transcribe_audio(audio_file, translate, model_size, use_diarization)
|
74 |
+
|
75 |
+
transcription = "Detected language changes:\n\n"
|
76 |
+
for segment in language_segments:
|
77 |
+
transcription += f"Language: {segment['language']}\n"
|
78 |
+
transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
|
79 |
+
|
80 |
+
transcription += f"Transcription with language detection and speaker diarization (using {model_size} model):\n\n"
|
81 |
+
full_text = ""
|
82 |
+
for segment in final_segments:
|
83 |
+
transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}) {segment['speaker']}:\n"
|
84 |
+
transcription += f"Original: {segment['text']}\n"
|
85 |
+
if translate:
|
86 |
+
transcription += f"Translated: {segment['translated']}\n"
|
87 |
+
full_text += segment['translated'] + " "
|
88 |
+
else:
|
89 |
+
full_text += segment['text'] + " "
|
90 |
+
transcription += "\n"
|
91 |
+
|
92 |
+
summary = summarize_text(full_text) if do_summarize else ""
|
93 |
+
logger.info("Process and summarize completed successfully")
|
94 |
+
return transcription, summary
|
95 |
+
except Exception as e:
|
96 |
+
logger.error(f"Process and summarize failed: {str(e)}")
|
97 |
+
logger.error(traceback.format_exc())
|
98 |
+
raise gr.Error(f"Processing failed: {str(e)}")
|
99 |
|
100 |
# Main interface
|
101 |
with gr.Blocks() as iface:
|
|
|
124 |
gr.Markdown(
|
125 |
f"""
|
126 |
## System Information
|
127 |
+
- Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
|
128 |
+
- CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
|
129 |
|
130 |
## ZeroGPU Support
|
131 |
This application supports ZeroGPU for Hugging Face Spaces pro users.
|