Spaces:
Sleeping
Sleeping
File size: 14,185 Bytes
ab95a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import Optional
import torch
import torch.nn.functional as F
import numpy as np
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
@dataclass
class AjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass):
label_smoothing: float = field(
default=0.0,
metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
)
report_accuracy: bool = field(
default=False,
metadata={"help": "report accuracy metric"},
)
ignore_prefix_size: int = field(
default=0,
metadata={"help": "Ignore first N tokens"},
)
ignore_eos: bool = field(
default=False,
metadata={"help": "Ignore eos token"},
)
sentence_avg: bool = II("optimization.sentence_avg")
drop_worst_ratio: float = field(
default=0.0,
metadata={"help": "ratio for discarding bad samples"},
)
drop_worst_after: int = field(
default=0,
metadata={"help": "steps for discarding bad samples"},
)
use_rdrop: bool = field(
default=False, metadata={"help": "use R-Drop"}
)
reg_alpha: float = field(
default=1.0, metadata={"help": "weight for R-Drop"}
)
sample_patch_num: int = field(
default=196, metadata={"help": "sample patchs for v1"}
)
constraint_range: Optional[str] = field(
default=None,
metadata={"help": "constraint range"}
)
def construct_rdrop_sample(x):
if isinstance(x, dict):
for key in x:
x[key] = construct_rdrop_sample(x[key])
return x
elif isinstance(x, torch.Tensor):
return x.repeat(2, *([1] * (x.dim()-1)))
elif isinstance(x, int):
return x * 2
elif isinstance(x, np.ndarray):
return x.repeat(2)
else:
raise NotImplementedError
def kl_loss(p, q):
p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
loss = (p_loss + q_loss) / 2
return loss
def label_smoothed_nll_loss(
lprobs, target, epsilon, update_num, reduce=True,
drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
constraint_masks=None, constraint_start=None, constraint_end=None
):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
if constraint_masks is not None:
smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
elif constraint_start is not None and constraint_end is not None:
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
else:
smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
eps_i = epsilon / (lprobs.size(-1) - 1)
loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
if drop_worst_ratio > 0 and update_num > drop_worst_after:
if use_rdrop:
true_batch_size = loss.size(0) // 2
_, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
else:
loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
nll_loss = nll_loss[indices]
lprobs = lprobs[indices]
ntokens = loss.numel()
nll_loss = nll_loss.sum()
loss = loss.sum()
if use_rdrop:
true_batch_size = lprobs.size(0) // 2
p = lprobs[:true_batch_size]
q = lprobs[true_batch_size:]
if constraint_start is not None and constraint_end is not None:
constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
p = p[:, constraint_range]
q = q[:, constraint_range]
loss += kl_loss(p, q) * reg_alpha
return loss, nll_loss, ntokens
@register_criterion(
"ajust_label_smoothed_cross_entropy", dataclass=AjustLabelSmoothedCrossEntropyCriterionConfig
)
class AjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
ignore_eos=False,
report_accuracy=False,
drop_worst_ratio=0,
drop_worst_after=0,
use_rdrop=False,
reg_alpha=1.0,
sample_patch_num=196,
constraint_range=None
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.eps = label_smoothing
self.ignore_prefix_size = ignore_prefix_size
self.ignore_eos = ignore_eos
self.report_accuracy = report_accuracy
self.drop_worst_ratio = drop_worst_ratio
self.drop_worst_after = drop_worst_after
self.use_rdrop = use_rdrop
self.reg_alpha = reg_alpha
self.sample_patch_num = sample_patch_num
self.constraint_start = None
self.constraint_end = None
if constraint_range is not None:
constraint_start, constraint_end = constraint_range.split(',')
self.constraint_start = int(constraint_start)
self.constraint_end = int(constraint_end)
def forward(self, model, sample, update_num=0, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
if isinstance(sample, list):
if self.sample_patch_num > 0:
sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
sample_size = 1
logging_output = {
"loss": loss.data,
"loss_v1": loss_v1.data,
"loss_v2": loss_v2.data,
"nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
"ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
"nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
"sample_size": 1,
"sample_size_v1": sample_size_v1,
"sample_size_v2": sample_size_v2,
}
return loss, sample_size, logging_output
if self.use_rdrop:
construct_rdrop_sample(sample)
net_output = model(**sample["net_input"])
loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else ntokens
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["nsentences"],
"sample_size": sample_size,
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return loss, sample_size, logging_output
def get_lprobs_and_target(self, model, net_output, sample):
conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
constraint_masks = None
if "constraint_masks" in sample and sample["constraint_masks"] is not None:
constraint_masks = sample["constraint_masks"]
net_output[0].masked_fill_(~constraint_masks, -math.inf)
if self.constraint_start is not None and self.constraint_end is not None:
net_output[0][:, :, 4:self.constraint_start] = -math.inf
net_output[0][:, :, self.constraint_end:] = -math.inf
lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
target = model.get_targets(sample, net_output)
if self.ignore_prefix_size > 0:
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
if constraint_masks is not None:
constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
if self.ignore_eos:
bsz, seq_len, embed_dim = lprobs.size()
eos_indices = target.eq(self.task.tgt_dict.eos())
lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
target = target[~eos_indices].reshape(bsz, seq_len-1)
if constraint_masks is not None:
constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
if constraint_masks is not None:
constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
def compute_loss(self, model, net_output, sample, update_num, reduce=True):
lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
if constraint_masks is not None:
constraint_masks = constraint_masks[target != self.padding_idx]
lprobs = lprobs[target != self.padding_idx]
target = target[target != self.padding_idx]
loss, nll_loss, ntokens = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
update_num,
reduce=reduce,
drop_worst_ratio=self.drop_worst_ratio,
drop_worst_after=self.drop_worst_after,
use_rdrop=self.use_rdrop,
reg_alpha=self.reg_alpha,
constraint_masks=constraint_masks,
constraint_start=self.constraint_start,
constraint_end=self.constraint_end
)
return loss, nll_loss, ntokens
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size, sample_size, round=3
)
metrics.log_scalar(
"loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
)
metrics.log_scalar(
"loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / sample_size, ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
metrics.log_scalar(
"ntokens", ntokens, 1, round=3
)
metrics.log_scalar(
"nsentences", nsentences, 1, round=3
)
metrics.log_scalar(
"sample_size", sample_size, 1, round=3
)
metrics.log_scalar(
"sample_size_v1", sample_size_v1, 1, round=3
)
metrics.log_scalar(
"sample_size_v2", sample_size_v2, 1, round=3
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("n_correct", n_correct)
metrics.log_derived(
"accuracy",
lambda meters: round(
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
|