Spaces:
Sleeping
Sleeping
import string | |
import math | |
import torch | |
from data import data_utils | |
def get_symbols_to_strip_from_output(generator): | |
if hasattr(generator, "symbols_to_strip_from_output"): | |
return generator.symbols_to_strip_from_output | |
else: | |
return {generator.bos, generator.eos} | |
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None): | |
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator)) | |
if bpe is not None: | |
x = bpe.decode(x) | |
if tokenizer is not None: | |
x = tokenizer.decode(x) | |
return x | |
def eval_caption(task, generator, models, sample): | |
transtab = str.maketrans({key: None for key in string.punctuation}) | |
hypos = task.inference_step(generator, models, sample) | |
results = [] | |
for i, sample_id in enumerate(sample["id"].tolist()): | |
detok_hypo_str = decode_fn(hypos[i][0]["tokens"], task.tgt_dict, task.bpe, generator) | |
results.append({"image_id": str(sample_id), "caption": detok_hypo_str.translate(transtab).strip()}) | |
return results, None | |
def eval_refcoco(task, generator, models, sample): | |
def _calculate_ap_score(hyps, refs, thresh=0.5): | |
interacts = torch.cat( | |
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]), | |
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])], | |
dim=1 | |
) | |
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1]) | |
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1]) | |
interacts_w = interacts[:, 2] - interacts[:, 0] | |
interacts_h = interacts[:, 3] - interacts[:, 1] | |
area_interacts = interacts_w * interacts_h | |
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6) | |
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float() | |
gen_out = task.inference_step(generator, models, sample) | |
hyps = [] | |
for i in range(len(gen_out)): | |
hyps.append(gen_out[i][0]["tokens"][:-1] - len(task.src_dict) + task.cfg.num_bins) | |
hyps = torch.stack(hyps, dim=0) | |
hyps = hyps / (task.cfg.num_bins - 1) * task.cfg.max_image_size | |
hyps[:, ::2] /= sample['w_resize_ratios'].unsqueeze(1) | |
hyps[:, 1::2] /= sample['h_resize_ratios'].unsqueeze(1) | |
results = [ | |
{"uniq_id": sample_id, | |
"box": [hyps[i][0].item(), hyps[i][1].item(), hyps[i][2].item(), hyps[i][3].item()]} | |
for i, sample_id in enumerate(sample["id"].tolist()) | |
] | |
scores = _calculate_ap_score(hyps, sample['region_coords'].float()) | |
return results, scores | |
def eval_step(task, generator, models, sample): | |
if task.cfg._name == 'caption': | |
return eval_caption(task, generator, models, sample) | |
elif task.cfg._name == 'refcoco': | |
return eval_refcoco(task, generator, models, sample) | |
else: | |
raise NotImplementedError | |