Spaces:
Paused
Paused
File size: 1,191 Bytes
355da42 a3eeb8a 355da42 a3eeb8a 355da42 a3eeb8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import joblib
import sklearn
import pandas as pd
import numpy as np
loaded_rf = joblib.load("model_joblib")
Description=pd.read_csv("symptom_Description.csv")
severity=pd.read_csv("Symptom-severity.csv")
severity['Symptom'] = severity['Symptom'].str.replace('_',' ')
precaution = pd.read_csv("symptom_precaution.csv")
def predd(x,psymptoms):
#print(psymptoms)
psymptoms.extend([0] * (17-len(psymptoms)))
a = np.array(severity["Symptom"])
b = np.array(severity["weight"])
for j in range(len(psymptoms)):
for k in range(len(a)):
if psymptoms[j]==a[k]:
psymptoms[j]=b[k]
psy = [psymptoms]
pred2 = x.predict(psy)
disp= Description[Description['Disease']==pred2[0]]
disp = disp.values[0][1]
recomnd = precaution[precaution['Disease']==pred2[0]]
c=np.where(precaution['Disease']==pred2[0])[0][0]
precuation_list=[]
for i in range(1,len(precaution.iloc[c])):
precuation_list.append(precaution.iloc[c,i])
combined_info = f"The Disease Name: {pred2[0]}\nThe Disease Description: {disp}\nRecommended Things to do at home:"+''.join([f'\n -{i}' for i in precuation_list])
return combined_info |