Medassistant / deployML.py
mouadenna's picture
Upload 7 files
355da42
raw
history blame
1.37 kB
import joblib
import sklearn
import pandas as pd
import numpy as np
loaded_rf = joblib.load("model_joblib")
Description=pd.read_csv("symptom_Description.csv")
severity=pd.read_csv("Symptom-severity.csv")
severity['Symptom'] = severity['Symptom'].str.replace('_',' ')
precaution = pd.read_csv("symptom_precaution.csv")
def predd(x,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17):
psymptoms = [S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17]
#print(psymptoms)
a = np.array(severity["Symptom"])
b = np.array(severity["weight"])
for j in range(len(psymptoms)):
for k in range(len(a)):
if psymptoms[j]==a[k]:
psymptoms[j]=b[k]
psy = [psymptoms]
pred2 = x.predict(psy)
disp= Description[Description['Disease']==pred2[0]]
disp = disp.values[0][1]
recomnd = precaution[precaution['Disease']==pred2[0]]
c=np.where(precaution['Disease']==pred2[0])[0][0]
precuation_list=[]
for i in range(1,len(precaution.iloc[c])):
precuation_list.append(precaution.iloc[c,i])
print("The Disease Name: ",pred2[0])
print("The Disease Discription: ",disp)
print("Recommended Things to do at home: ")
for i in precuation_list:
print(" -",i)
"""
predd(loaded_rf,'high fever','sunken eyes','breathlessness',0,0,0,0,0,0,0,'sweating',0,0,0,0,0,0)
"""