Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import pytesseract | |
from PIL import Image, UnidentifiedImageError | |
import re | |
import os | |
import logging | |
# Configurer les répertoires de cache | |
os.environ['TRANSFORMERS_CACHE'] = '/app/.cache' | |
os.environ['HF_HOME'] = '/app/.cache' | |
# Configurer les logs | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialiser les pipelines | |
summarize = pipeline('summarization', model="facebook/bart-large-cnn") | |
pipe = pipeline("summarization", model="plguillou/t5-base-fr-sum-cnndm") | |
classify_zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
# Fonction de résumé de texte avec classification | |
def summarize_text(text): | |
if text.strip() == "": | |
return "Veuillez entrer un texte", {} | |
preprocessing_text = re.sub(r'\s+', ' ', text).strip() | |
summary = pipe(preprocessing_text, do_sample=False) | |
summary_text = summary[0].get('summary_text') | |
logger.info(f"[INFO] Input data: {preprocessing_text}") | |
logger.info(f"[INFO] Summary: {summary_text}") | |
result = classify_zero_shot( | |
summary_text, | |
candidate_labels=["En Cours", "Non traiter", "Terminer"], | |
hypothesis_template="Cet Résumé est sur {}." | |
) | |
scores = {label: float(score) for label, score in zip(result['labels'], result['scores'])} | |
return summary_text, scores | |
# Fonction de chargement d'image | |
def image_load(image): | |
try: | |
if image is None: | |
return "Aucune image fournie", {} | |
raw_text = pytesseract.image_to_string(image, lang='fra') | |
preprocessing = re.sub(r'\s+', ' ', raw_text).strip() | |
text_summary = pipe(preprocessing, do_sample=False) | |
summary_text_from_image = text_summary[0].get('summary_text') | |
result = classify_zero_shot( | |
summary_text_from_image, | |
candidate_labels=["En Cours", "Non traiter", "Terminer"], | |
hypothesis_template="Cet Résumé est sur {}." | |
) | |
scores = {label: float(score) for label, score in zip(result['labels'], result['scores'])} | |
logger.info(f"[INFO] Input data: {preprocessing}") | |
logger.info(f"[INFO] Summary: {result}") | |
return summary_text_from_image,scores | |
except UnidentifiedImageError: | |
return "Impossible de charger l'image", {} | |
except Exception as e: | |
logger.error(f"Error processing image: {e}") | |
return str(e), {} | |
# Fonction de gestion des entrées | |
def handle_input(text_input, image_input, mode): | |
if mode == "Texte": | |
return summarize_text(text_input) | |
elif mode == "Image": | |
return image_load(image_input) | |
else: | |
return "Sélectionnez une option valide", {} | |
# Interface Gradio | |
with gr.Blocks() as iface: | |
gr.Markdown("## Sélectionnez une option") | |
with gr.Row(): | |
with gr.Column(): | |
mode = gr.Dropdown(choices=["Texte", "Image"], label="Resumé Texte ou Image",info="Selectionner une options") | |
text_input = gr.Textbox(lines=4,label="Entrée de texte") | |
image_input = gr.Image(label="Téléverser une image", type="pil") | |
submit_btn = gr.Button("Soumettre") | |
with gr.Column(): | |
output_summary = gr.Textbox(label="Résumé") | |
output_classification = gr.Label(label="Classification") | |
def update_inputs(mode_select): | |
if mode_select == "Texte": | |
return gr.update(visible=True), gr.update(visible=False) | |
elif mode_select == "Image": | |
return gr.update(visible=False), gr.update(visible=True) | |
logger.info(f"[INFO] input mode: {update_inputs}") | |
mode.change(fn=update_inputs, inputs=mode, outputs=[text_input, image_input]) | |
submit_btn.click(fn=handle_input, inputs=[text_input, image_input, mode], outputs=[output_summary, output_classification]) | |
if __name__ == "__main__": | |
iface.launch() | |