bambadij's picture
Add gradio
872f993
raw
history blame
3.92 kB
import gradio as gr
from transformers import pipeline
import pytesseract
from PIL import Image, UnidentifiedImageError
import re
import os
import logging
# Configurer les répertoires de cache
os.environ['TRANSFORMERS_CACHE'] = '/app/.cache'
os.environ['HF_HOME'] = '/app/.cache'
# Configurer les logs
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialiser les pipelines
summarize = pipeline('summarization', model="facebook/bart-large-cnn")
pipe = pipeline("summarization", model="plguillou/t5-base-fr-sum-cnndm")
classify_zero_shot = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Fonction de résumé de texte avec classification
def summarize_text(text):
if text.strip() == "":
return "Veuillez entrer un texte", {}
preprocessing_text = re.sub(r'\s+', ' ', text).strip()
summary = pipe(preprocessing_text, do_sample=False)
summary_text = summary[0].get('summary_text')
logger.info(f"[INFO] Input data: {preprocessing_text}")
logger.info(f"[INFO] Summary: {summary_text}")
result = classify_zero_shot(
summary_text,
candidate_labels=["En Cours", "Non traiter", "Terminer"],
hypothesis_template="Cet Résumé est sur {}."
)
scores = {label: float(score) for label, score in zip(result['labels'], result['scores'])}
return summary_text, scores
# Fonction de chargement d'image
def image_load(image):
try:
if image is None:
return "Aucune image fournie", {}
raw_text = pytesseract.image_to_string(image, lang='fra')
preprocessing = re.sub(r'\s+', ' ', raw_text).strip()
text_summary = pipe(preprocessing, do_sample=False)
summary_text_from_image = text_summary[0].get('summary_text')
result = classify_zero_shot(
summary_text_from_image,
candidate_labels=["En Cours", "Non traiter", "Terminer"],
hypothesis_template="Cet Résumé est sur {}."
)
scores = {label: float(score) for label, score in zip(result['labels'], result['scores'])}
logger.info(f"[INFO] Input data: {preprocessing}")
logger.info(f"[INFO] Summary: {result}")
return summary_text_from_image,scores
except UnidentifiedImageError:
return "Impossible de charger l'image", {}
except Exception as e:
logger.error(f"Error processing image: {e}")
return str(e), {}
# Fonction de gestion des entrées
def handle_input(text_input, image_input, mode):
if mode == "Texte":
return summarize_text(text_input)
elif mode == "Image":
return image_load(image_input)
else:
return "Sélectionnez une option valide", {}
# Interface Gradio
with gr.Blocks() as iface:
gr.Markdown("## Sélectionnez une option")
with gr.Row():
with gr.Column():
mode = gr.Dropdown(choices=["Texte", "Image"], label="Resumé Texte ou Image",info="Selectionner une options")
text_input = gr.Textbox(lines=4,label="Entrée de texte")
image_input = gr.Image(label="Téléverser une image", type="pil")
submit_btn = gr.Button("Soumettre")
with gr.Column():
output_summary = gr.Textbox(label="Résumé")
output_classification = gr.Label(label="Classification")
def update_inputs(mode_select):
if mode_select == "Texte":
return gr.update(visible=True), gr.update(visible=False)
elif mode_select == "Image":
return gr.update(visible=False), gr.update(visible=True)
logger.info(f"[INFO] input mode: {update_inputs}")
mode.change(fn=update_inputs, inputs=mode, outputs=[text_input, image_input])
submit_btn.click(fn=handle_input, inputs=[text_input, image_input, mode], outputs=[output_summary, output_classification])
if __name__ == "__main__":
iface.launch()