import streamlit as st import os from langchain import HuggingFaceHub, PromptTemplate, LLMChain # Define your AI assistant setup and configurations here os.environ['API_KEY'] = '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' model_id = 'tiiuae/falcon-7b-instruct' falcon_llm = HuggingFaceHub(huggingfacehub_api_token=os.environ['API_KEY'], repo_id=model_id, model_kwargs={"temperature": 0.8, "max_new_tokens": 2000}) template = """ You are an AI assistant that provides helpful answers to user queries. {conversation} """ prompt = PromptTemplate(template=template, input_variables=['conversation']) falcon_chain = LLMChain(llm=falcon_llm, prompt=prompt, verbose=True) # Define the Streamlit app def main(): st.title("Mouli's AI Assistant") # Initialize conversation history as a list conversation_history = st.session_state.get("conversation_history", []) # Create an input box at the bottom for user's message user_message = st.text_input("Your message:") # If the user's message is not empty, process it if user_message: # Add user's message to conversation history conversation_history.append(("user", user_message)) # Combine conversation history to use as input for the AI assistant conversation_input = "\n".join([f"{author}: {message}" for author, message in conversation_history]) # Use your AI assistant to generate a response based on the conversation response = falcon_chain.run(conversation_input) # Add AI's response to conversation history conversation_history.append(("AI", response)) # Store the updated conversation history in session state st.session_state.conversation_history = conversation_history # Display the conversation history display_conversation(conversation_history) def display_conversation(conversation_history): st.markdown("", unsafe_allow_html=True) st.markdown("", unsafe_allow_html=True) st.markdown("", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) if __name__ == "__main__": main()