mouliraj56 commited on
Commit
ad37ff6
·
1 Parent(s): ef4d957

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +130 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from statsmodels.tsa.seasonal import seasonal_decompose
6
+ from sklearn.preprocessing import MinMaxScaler
7
+ from keras.preprocessing.sequence import TimeseriesGenerator
8
+ from keras.models import Sequential
9
+ from keras.layers import Dense, LSTM
10
+ import yfinance as yf
11
+
12
+
13
+
14
+ # Function to execute the entire code, handling potential errors
15
+ def forecast_stock(ticker, period, interval):
16
+ try:
17
+ # Download data
18
+ df = yf.download(ticker, period=period, interval=interval)
19
+ df = df.asfreq('D').fillna(method='ffill')
20
+
21
+ # Filter columns
22
+ ts = df[['Close']]
23
+
24
+ # Perform seasonal decomposition
25
+ decomposition = seasonal_decompose(ts, model='additive')
26
+
27
+ # Train/test split
28
+ ts_train = ts.iloc[:int(ts.size * .8)]
29
+ ts_test = ts.iloc[int(ts.size * .8):]
30
+
31
+ # Normalize the data
32
+ scaler = MinMaxScaler()
33
+ scaler.fit(ts_train.values)
34
+ scaled_ts_train_values = scaler.transform(ts_train.values)
35
+ scaled_ts_test_values = scaler.transform(ts_test.values)
36
+
37
+ # Create LSTM model
38
+ n_input = 24
39
+ n_features = 1
40
+ generator = TimeseriesGenerator(scaled_ts_train_values, scaled_ts_train_values, length=n_input, batch_size=1)
41
+ model = Sequential()
42
+ model.add(LSTM(100, activation='relu', input_shape=(n_input, n_features)))
43
+ model.add(Dense(1))
44
+ model.compile(optimizer='adam', loss='mse')
45
+ model.fit(generator, epochs=50, verbose=0)
46
+
47
+ # Make predictions
48
+ test_predictions = []
49
+ first_eval_batch = scaled_ts_train_values[-n_input:]
50
+ current_batch = first_eval_batch.reshape((1, n_input, n_features))
51
+ for i in range(len(ts_test)):
52
+ current_pred = model.predict(current_batch, verbose=0)[0]
53
+ test_predictions.append(current_pred)
54
+ current_batch = np.append(current_batch[:, 1:, :], [[current_pred]], axis=1)
55
+
56
+ true_predictions = scaler.inverse_transform(test_predictions)
57
+
58
+
59
+ fig = plt.figure(figsize=(10, 6))
60
+ plt.plot(ts.index, ts.values, label='Original Data')
61
+ plt.plot(ts_test.index, true_predictions, label='Forecasted Data')
62
+ plt.legend()
63
+ plt.xlabel('Time')
64
+ plt.ylabel('Value')
65
+ plt.title('Stock Price Forecast')
66
+
67
+ return fig
68
+
69
+
70
+ except Exception as e:
71
+ print(f"An error occurred: {e}")
72
+ return gr.Markdown(f"An error occurred: {e}") # Display error in interface
73
+
74
+ tickers_info="""
75
+ **Ticker Examples**
76
+ ---
77
+ **Common Stocks**
78
+
79
+ - **AAPL:** Apple Inc.
80
+ - **MSFT:** Microsoft Corp.
81
+ - **GOOG:** Alphabet Inc. (Google)
82
+ - **AMZN:** Amazon.com Inc.
83
+ - **TSLA:** Tesla Inc.
84
+ - **FB:** Meta Platforms Inc.
85
+
86
+ **Indices**
87
+
88
+ - **^GSPC:** S&P 500 Index
89
+ - **^IXIC:** Nasdaq Composite Index
90
+ - **^DJI:** Dow Jones Industrial Average
91
+
92
+ **ETFs ️**
93
+
94
+ - **SPY:** SPDR S&P 500 ETF Trust
95
+ - **QQQ:** Invesco QQQ Trust
96
+ - **IWM:** iShares Russell 2000 ETF
97
+ """
98
+
99
+
100
+
101
+ with gr.Blocks() as demo:
102
+ gr.Interface(
103
+ forecast_stock, # Function to execute on submit
104
+ [
105
+ gr.Textbox(label="Ticker", placeholder="e.g., AAPL, MSFT, GOOG"),
106
+ gr.Textbox(label="Period", placeholder="e.g., 1mo, 5y, max"),
107
+ gr.Textbox(label="Interval", placeholder="e.g., 1d, 1wk, 1h"),
108
+
109
+ ],
110
+ "plot", # Output type
111
+ live=False, # Disable live updates
112
+ title="Stock Price Forecast",
113
+ description="Enter a stock ticker, desired data period, and interval to generate a forecast.",
114
+ examples = [
115
+ ["AAPL", "2mo", "1d"], # Apple stock, data for 2 months, daily intervals
116
+ ["GOOG", "1y", "1d"], # Google stock, data for 1 year, daily intervals
117
+ ["MSFT", "5y", "1wk"], # Microsoft stock, data for 5 years, weekly intervals
118
+ ["TSLA", "max", "1h"], # Tesla stock, maximum available data, hourly intervals
119
+ ["AMZN", "1y", "1h"], # Amazon stock, data for 1 year, hourly intervals
120
+ ["NVDA", "3mo", "1d"], # NVIDIA stock, data for 3 months, daily intervals
121
+ ["FB", "1y", "1wk"], # Meta Platforms (Facebook) stock, data for 1 year, weekly intervals
122
+ ["JNJ", "2y", "1d"], # Johnson & Johnson stock, data for 2 years, daily intervals
123
+ ["BAC", "6mo", "1d"], # Bank of America stock, data for 6 months, daily intervals
124
+ ["XOM", "1y", "1wk"], # Exxon Mobil stock, data for 1 year, weekly intervals
125
+ ]
126
+ )
127
+ with gr.Accordion("Open for More info"):
128
+ gr.Markdown(tickers_info)
129
+
130
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ numpy
3
+ pandas
4
+ matplotlib
5
+ statsmodels
6
+ scikit-learn
7
+ keras
8
+ yfinance
9
+ tensorflow