Spaces:
Runtime error
Runtime error
File size: 10,073 Bytes
fff46d0 bde0e72 fff46d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
import os
import time
from threading import Thread
from datetime import datetime
from uuid import uuid4
import gradio as gr
from time import sleep
import pprint
import torch
from torch import cuda, bfloat16
import transformers
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from langchain.document_loaders.pdf import UnstructuredPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain.llms import HuggingFacePipeline
# model_names = ["tiiuae/falcon-7b-instruct", "tiiuae/falcon-40b-instruct", "tiiuae/falcon-rw-1b"]
model_names = ["tiiuae/falcon-7b-instruct"]
models = {}
embedding_function_name = "all-mpnet-base-v2"
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
max_new_tokens = 1024
repetition_penalty = 10.0
temperature = 0
chunk_size = 512
chunk_overlap = 32
def get_uuid():
return str(uuid4())
def create_embedding_function(embedding_function_name):
return HuggingFaceEmbeddings(model_name=embedding_function_name,
model_kwargs={"device": "cuda" if torch.cuda.is_available() else "cpu"})
def create_models():
for model_name in model_names:
if model_name == "tiiuae/falcon-40b-instruct":
bnb_config = transformers.BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=bfloat16
)
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
quantization_config=bnb_config,
device_map='auto'
)
else:
model = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map='auto'
)
model.eval()
print(f"Model loaded on {device}")
models[model_name] = model
create_models()
embedding_function = create_embedding_function(embedding_function_name)
def user(message, history):
# Append the user's message to the conversation history
if history is None:
history = []
return "", history + [[message, None]]
def bot(model_name, db_path, chat_mode, history):
if not history or history[-1][0] == "":
gr.Info("Please start the conversation by saying something.")
return None
chat_hist = history[:-1]
if chat_hist:
chat_hist = [tuple([y.replace("\n", ' ').strip(" ") for y in x]) for x in chat_hist]
print("@" * 20)
print(f"chat_hist:\n {chat_hist}")
print("@" * 20)
print('------------------------------------')
print(model_name)
print(db_path)
print(chat_mode)
print('------------------------------------')
# Need to create langchain model from db for each session
db = Chroma(persist_directory=db_path, embedding_function=embedding_function)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
stop_token_ids = [
tokenizer.convert_tokens_to_ids(x) for x in [
['Question', ':'],
['Answer', ':'],
['User', ':'],
]
]
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stop_ids in stop_token_ids:
if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
return True
return False
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_text = transformers.pipeline(
model=models[model_name], tokenizer=tokenizer,
return_full_text=True,
task='text-generation',
stopping_criteria=stopping_criteria,
temperature=temperature,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
streamer=streamer
)
pipeline = HuggingFacePipeline(pipeline=generate_text)
if chat_mode.lower() == 'basic':
print("chat mode: basic")
qa = RetrievalQA.from_llm(
llm=pipeline,
retriever=db.as_retriever(),
return_source_documents=True
)
def run_basic(history):
a = qa({"query": history[-1][0]})
pprint.pprint(a['source_documents'])
t = Thread(target=run_basic, args=(history,))
t.start()
else:
print("chat mode: conversational")
qa = ConversationalRetrievalChain.from_llm(
llm=pipeline,
retriever=db.as_retriever(),
return_source_documents=True
)
def run_conv(history, chat_hist):
a = qa({"question": history[-1][0], "chat_history": chat_hist})
pprint.pprint(a['source_documents'])
t = Thread(target=run_conv, args=(history, chat_hist))
t.start()
history[-1][1] = ""
for new_text in streamer:
history[-1][1] += new_text
time.sleep(0.01)
yield history
def pdf_changes(pdf_doc):
print("pdf changes, loading documents")
# Persistently store the db next to the uploaded pdf
db_path, file_ext = os.path.splitext(pdf_doc.name)
timestamp = datetime.now()
db_path += "_" + timestamp.strftime("%Y-%m-%d-%H-%S")
loader = UnstructuredPDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
db = Chroma.from_documents(texts, embedding_function, persist_directory=db_path)
db.persist()
return db_path
def init():
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div>
<img class="logo" src="https://lambdalabs.com/hubfs/logos/lambda-logo.svg" alt="Lambda Logo"
style="margin: auto; max-width: 7rem;">
<h1 style="font-weight: 900; font-size: 3rem;">
Chat With FalconPDF
</h1>
</div>
</div>
"""
)
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
model_id = gr.Radio(label="LLM", choices=model_names, value=model_names[0], interactive=True)
db_path = gr.Textbox(label="DB_PATH", visible=False)
chat_mode = gr.Radio(label="Chat mode", choices=['Basic', 'Conversational'], value='Basic',
info="Basic: no coversational context. Conversational: uses conversational context.")
chatbot = gr.Chatbot(height=500)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Chat Message Box",
show_label=False,
container=False
)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit")
stop = gr.Button("Stop")
clear = gr.Button("Clear")
gr.Examples(['What is the summary of the paper?',
'What is the motivation of the paper?'],
inputs=msg)
def clear_input():
sleep(1)
return ""
with gr.Row():
gr.HTML(
"""
<div class="footer">
<p> A chatbot tries to give helpful, detailed, and polite answers to the user's questions. Gradio Demo created by <a href="https://lambdalabs.com/">Lambda</a>.</p>
</div>
<div class="acknowledgments">
<p> It is based on Falcon 7B/40B. More information can be found <a href="https://falconllm.tii.ae/">here</a>.</p>
</div>
"""
)
model_id.change(clear_input, inputs=[], outputs=[msg])
pdf_doc.upload(pdf_changes, inputs=[pdf_doc], outputs=[db_path]). \
then(clear_input, inputs=[], outputs=[msg]). \
then(lambda: None, None, chatbot)
# enter key event
submit_event = msg.submit(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=bot,
inputs=[
model_id,
db_path,
chat_mode,
chatbot,
],
outputs=chatbot,
queue=True,
)
# click submit button event
submit_click_event = submit.click(
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=bot,
inputs=[
model_id,
db_path,
chat_mode,
chatbot,
],
outputs=chatbot,
queue=True,
)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue(max_size=32, concurrency_count=2)
demo.launch(server_port=8266, inline=False, share=True)
if __name__ == "__main__":
init() |