Spaces:
Running
on
Zero
Running
on
Zero
github-actions[bot]
commited on
Commit
·
b399068
1
Parent(s):
5d20e7d
Sync with https://github.com/mozilla-ai/speech-to-text-finetune
Browse files
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import gradio as gr
|
3 |
-
import spaces
|
4 |
from transformers import pipeline, Pipeline
|
|
|
|
|
|
|
|
|
5 |
|
6 |
is_hf_space = os.getenv("IS_HF_SPACE")
|
|
|
7 |
model_ids = [
|
8 |
"",
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"openai/whisper-
|
12 |
-
"openai/whisper-
|
13 |
-
"openai/whisper-
|
14 |
-
"openai/whisper-large-v3 (Multilingual)",
|
15 |
-
"openai/whisper-large-v3-turbo (Multilingual)",
|
16 |
]
|
17 |
|
18 |
|
19 |
-
def _load_local_model(model_dir: str) -> Pipeline:
|
|
|
|
|
20 |
from transformers import (
|
21 |
WhisperProcessor,
|
22 |
WhisperTokenizer,
|
@@ -25,53 +31,56 @@ def _load_local_model(model_dir: str) -> Pipeline:
|
|
25 |
)
|
26 |
|
27 |
processor = WhisperProcessor.from_pretrained(model_dir)
|
28 |
-
tokenizer = WhisperTokenizer.from_pretrained(
|
|
|
|
|
29 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
|
30 |
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
)
|
40 |
-
except Exception as e:
|
41 |
-
return str(e)
|
42 |
|
43 |
|
44 |
-
def _load_hf_model(model_repo_id: str) -> Pipeline:
|
45 |
-
|
46 |
-
return
|
47 |
-
|
48 |
-
|
49 |
)
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
hf_model_id: str,
|
58 |
-
local_model_id: str,
|
59 |
-
audio: gr.Audio,
|
60 |
-
) -> str:
|
61 |
if dropdown_model_id and not hf_model_id and not local_model_id:
|
62 |
-
|
63 |
-
|
64 |
elif hf_model_id and not local_model_id and not dropdown_model_id:
|
65 |
-
|
|
|
66 |
elif local_model_id and not hf_model_id and not dropdown_model_id:
|
67 |
-
|
|
|
68 |
else:
|
69 |
-
|
70 |
-
|
|
|
71 |
)
|
72 |
-
if
|
73 |
-
|
74 |
-
|
|
|
|
|
75 |
text = pipe(audio)["text"]
|
76 |
return text
|
77 |
|
@@ -80,12 +89,18 @@ def setup_gradio_demo():
|
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.Markdown(
|
82 |
""" # 🗣️ Speech-to-Text Transcription
|
83 |
-
### 1. Select
|
84 |
-
### 2.
|
85 |
-
### 3.
|
|
|
|
|
86 |
"""
|
87 |
)
|
88 |
-
### Model selection ###
|
|
|
|
|
|
|
|
|
89 |
|
90 |
with gr.Row():
|
91 |
with gr.Column():
|
@@ -103,6 +118,9 @@ def setup_gradio_demo():
|
|
103 |
placeholder="artifacts/my-whisper-tiny",
|
104 |
)
|
105 |
|
|
|
|
|
|
|
106 |
### Transcription ###
|
107 |
audio_input = gr.Audio(
|
108 |
sources=["microphone", "upload"],
|
@@ -114,10 +132,16 @@ def setup_gradio_demo():
|
|
114 |
transcribe_button = gr.Button("Transcribe")
|
115 |
transcribe_output = gr.Text(label="Output")
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
transcribe_button.click(
|
118 |
-
fn=transcribe,
|
119 |
-
inputs=[dropdown_model, user_model, local_model, audio_input],
|
120 |
-
outputs=transcribe_output,
|
121 |
)
|
122 |
|
123 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Tuple
|
4 |
import gradio as gr
|
|
|
5 |
from transformers import pipeline, Pipeline
|
6 |
+
from huggingface_hub import repo_exists
|
7 |
+
|
8 |
+
|
9 |
+
from speech_to_text_finetune.config import LANGUAGES_NAME_TO_ID
|
10 |
|
11 |
is_hf_space = os.getenv("IS_HF_SPACE")
|
12 |
+
languages = LANGUAGES_NAME_TO_ID.keys()
|
13 |
model_ids = [
|
14 |
"",
|
15 |
+
"openai/whisper-tiny",
|
16 |
+
"openai/whisper-small",
|
17 |
+
"openai/whisper-medium",
|
18 |
+
"openai/whisper-large-v3",
|
19 |
+
"openai/whisper-large-v3-turbo",
|
|
|
|
|
20 |
]
|
21 |
|
22 |
|
23 |
+
def _load_local_model(model_dir: str, language: str) -> Tuple[Pipeline | None, str]:
|
24 |
+
if not Path(model_dir).is_dir():
|
25 |
+
return None, f"⚠️ Couldn't find local model directory: {model_dir}"
|
26 |
from transformers import (
|
27 |
WhisperProcessor,
|
28 |
WhisperTokenizer,
|
|
|
31 |
)
|
32 |
|
33 |
processor = WhisperProcessor.from_pretrained(model_dir)
|
34 |
+
tokenizer = WhisperTokenizer.from_pretrained(
|
35 |
+
model_dir, language=language, task="transcribe"
|
36 |
+
)
|
37 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
|
38 |
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
|
39 |
|
40 |
+
return pipeline(
|
41 |
+
task="automatic-speech-recognition",
|
42 |
+
model=model,
|
43 |
+
processor=processor,
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
feature_extractor=feature_extractor,
|
46 |
+
), f"✅ Local model has been loaded from {model_dir}."
|
|
|
|
|
|
|
47 |
|
48 |
|
49 |
+
def _load_hf_model(model_repo_id: str, language: str) -> Tuple[Pipeline | None, str]:
|
50 |
+
if not repo_exists(model_repo_id):
|
51 |
+
return (
|
52 |
+
None,
|
53 |
+
f"⚠️ Couldn't find {model_repo_id} on Hugging Face. If its a private repo, make sure you are logged in locally.",
|
54 |
)
|
55 |
+
return pipeline(
|
56 |
+
"automatic-speech-recognition",
|
57 |
+
model=model_repo_id,
|
58 |
+
generate_kwargs={"language": language},
|
59 |
+
), f"✅ HF Model {model_repo_id} has been loaded."
|
60 |
|
61 |
|
62 |
+
def load_model(
|
63 |
+
language: str, dropdown_model_id: str, hf_model_id: str, local_model_id: str
|
64 |
+
) -> Tuple[Pipeline, str]:
|
|
|
|
|
|
|
|
|
65 |
if dropdown_model_id and not hf_model_id and not local_model_id:
|
66 |
+
yield None, f"Loading {dropdown_model_id}..."
|
67 |
+
yield _load_hf_model(dropdown_model_id, language)
|
68 |
elif hf_model_id and not local_model_id and not dropdown_model_id:
|
69 |
+
yield None, f"Loading {hf_model_id}..."
|
70 |
+
yield _load_hf_model(hf_model_id, language)
|
71 |
elif local_model_id and not hf_model_id and not dropdown_model_id:
|
72 |
+
yield None, f"Loading {local_model_id}..."
|
73 |
+
yield _load_local_model(local_model_id, language)
|
74 |
else:
|
75 |
+
yield (
|
76 |
+
None,
|
77 |
+
"️️⚠️ Please select or fill at least and only one of the options above",
|
78 |
)
|
79 |
+
if not language:
|
80 |
+
yield None, "⚠️ Please select a language from the dropdown"
|
81 |
+
|
82 |
+
|
83 |
+
def transcribe(pipe: Pipeline, audio: gr.Audio) -> str:
|
84 |
text = pipe(audio)["text"]
|
85 |
return text
|
86 |
|
|
|
89 |
with gr.Blocks() as demo:
|
90 |
gr.Markdown(
|
91 |
""" # 🗣️ Speech-to-Text Transcription
|
92 |
+
### 1. Select a language from the dropdown menu.
|
93 |
+
### 2. Select which model to load from one of the options below.
|
94 |
+
### 3. Load the model by clicking the Load model button.
|
95 |
+
### 4. Record a message or upload an audio file.
|
96 |
+
### 5. Click Transcribe to see the transcription generated by the model.
|
97 |
"""
|
98 |
)
|
99 |
+
### Language & Model selection ###
|
100 |
+
|
101 |
+
selected_lang = gr.Dropdown(
|
102 |
+
choices=list(languages), value=None, label="Select a language"
|
103 |
+
)
|
104 |
|
105 |
with gr.Row():
|
106 |
with gr.Column():
|
|
|
118 |
placeholder="artifacts/my-whisper-tiny",
|
119 |
)
|
120 |
|
121 |
+
load_model_button = gr.Button("Load model")
|
122 |
+
model_loaded = gr.Markdown()
|
123 |
+
|
124 |
### Transcription ###
|
125 |
audio_input = gr.Audio(
|
126 |
sources=["microphone", "upload"],
|
|
|
132 |
transcribe_button = gr.Button("Transcribe")
|
133 |
transcribe_output = gr.Text(label="Output")
|
134 |
|
135 |
+
### Event listeners ###
|
136 |
+
model = gr.State()
|
137 |
+
load_model_button.click(
|
138 |
+
fn=load_model,
|
139 |
+
inputs=[selected_lang, dropdown_model, user_model, local_model],
|
140 |
+
outputs=[model, model_loaded],
|
141 |
+
)
|
142 |
+
|
143 |
transcribe_button.click(
|
144 |
+
fn=transcribe, inputs=[model, audio_input], outputs=transcribe_output
|
|
|
|
|
145 |
)
|
146 |
|
147 |
demo.launch()
|