Spaces:
Build error
Build error
from transformers import AutoTokenizer, AutoModelForSequenceClassification, get_linear_schedule_with_warmup | |
import datasets | |
import pandas as pd | |
import pyarrow | |
import pytorch_lightning as pl | |
import torchmetrics | |
import torch.nn as nn | |
import torch | |
import types | |
import multiprocessing | |
from .text_cleaning import clean_text_funcs | |
class RRUMDataset(): | |
scalar_features = ['channel_sim'] | |
_image_features = ['regret_thumbnail', | |
'recommendation_thumbnail'] # not used atm | |
def __init__(self, data, with_transcript, cross_encoder_model_name_or_path, label_col="label", label_map=None, balance_label_counts=False, max_length=128, do_train_test_split=False, test_size=0.25, seed=42, keep_video_ids_for_predictions=False, encode_on_the_fly=False, clean_text=False, processing_batch_size=1000, processing_num_proc=1): | |
self._with_transcript = with_transcript | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
cross_encoder_model_name_or_path) | |
self.label_col = label_col | |
self.label_map = label_map | |
self.balance_label_counts = balance_label_counts | |
self.max_length = max_length | |
self.seed = seed | |
self.keep_video_ids_for_predictions = keep_video_ids_for_predictions | |
self.clean_text = clean_text | |
self.processing_batch_size = processing_batch_size | |
self.processing_num_proc = multiprocessing.cpu_count( | |
) if not processing_num_proc else processing_num_proc | |
self.text_types = ['title', 'description'] + \ | |
(['transcript'] if self._with_transcript else []) | |
self._text_features = [ | |
'regret_title', 'recommendation_title', 'regret_description', | |
'recommendation_description'] + (['regret_transcript', 'recommendation_transcript'] if self._with_transcript else []) | |
# LOAD DATA INTO DATASET | |
self.streaming_dataset = False | |
if isinstance(data, pd.DataFrame): | |
self.dataset = datasets.Dataset.from_pandas(data) | |
elif isinstance(data, types.GeneratorType): | |
examples_iterable = datasets.iterable_dataset.ExamplesIterable( | |
self._streaming_generate_examples, {"iterable": data}) | |
self.dataset = datasets.IterableDataset(examples_iterable) | |
self._stream_dataset_example = next(iter(self.dataset)) | |
self._stream_dataset_column_names = list( | |
self._stream_dataset_example.keys()) | |
self.streaming_dataset = True | |
elif isinstance(data, pyarrow.Table): | |
self.dataset = datasets.Dataset(data) | |
else: | |
raise ValueError( | |
f'Type of data is {type(data)} when pd.DataFrame, pyarrow.Table, or generator of pyarrow.RecordBatch is allowed') | |
# PREPROCESS DATASET | |
self._preprocess() | |
# ENCODE DATASET | |
self.train_dataset = None | |
self.test_dataset = None | |
if self.streaming_dataset: | |
# IterableDataset doesn't have train_test_split method | |
if self.label_col: | |
self.train_dataset = self._encode_streaming(self.dataset) | |
print('Streaming dataset available in .train_dataset') | |
else: | |
self.test_dataset = self._encode_streaming(self.dataset) | |
print( | |
'Streaming dataset available in .test_dataset because label_col=None') | |
else: | |
# dataset into train_dataset and/or test_dataset | |
if do_train_test_split: | |
ds = self.dataset.train_test_split( | |
test_size=test_size, shuffle=True, seed=self.seed, stratify_by_column=self.label_col) | |
self.train_dataset = ds['train'] | |
self.test_dataset = ds['test'] | |
print( | |
f'Dataset was splitted into train and test with test_size={test_size}') | |
else: | |
if self.label_col: | |
self.train_dataset = self.dataset | |
else: | |
self.test_dataset = self.dataset | |
if encode_on_the_fly: | |
if self.train_dataset: | |
self.train_dataset.set_transform(self._encode_on_the_fly) | |
print('On-the-fly encoded dataset available in .train_dataset') | |
if self.test_dataset: | |
self.test_dataset.set_transform(self._encode_on_the_fly) | |
print('On-the-fly encoded dataset available in .test_dataset') | |
else: | |
if self.train_dataset: | |
self.train_dataset = self._encode(self.train_dataset) | |
print('Pre-encoded dataset available in .train_dataset') | |
if self.test_dataset: | |
self.test_dataset = self._encode(self.test_dataset) | |
print('Pre-encoded dataset available in .test_dataset') | |
def __len__(self): | |
if self.streaming_dataset: | |
raise ValueError( | |
f'Streaming dataset does not support len() method') | |
return len(self.dataset) | |
def __getitem__(self, index): | |
if self.streaming_dataset: | |
return next(iter(self.dataset)) | |
return self.dataset[index] | |
def _streaming_generate_examples(self, iterable): | |
id_ = 0 | |
# TODO: make sure GeneratorType is pyarrow.RecordBatch | |
if isinstance(iterable, types.GeneratorType): | |
for examples in iterable: | |
for ex in examples.to_pylist(): | |
yield id_, ex | |
id_ += 1 | |
def _preprocess(self): | |
if self._with_transcript: | |
self.dataset = self.dataset.filter( | |
lambda example: example['regret_transcript'] is not None and example['recommendation_transcript'] is not None) | |
else: | |
self.dataset = self.dataset.filter( | |
lambda example: example['regret_transcript'] is None or example['recommendation_transcript'] is None) | |
if self.label_col: | |
if self.streaming_dataset: | |
if self.label_col in self._stream_dataset_column_names and isinstance(self._stream_dataset_example[self.label_col], str): | |
if not self.label_map: | |
raise ValueError( | |
f'"label_map" dict was not provided and is needed to encode string labels for streaming datasets') | |
# cast_column method had issues with streaming dataset | |
self.dataset = self.dataset.map( | |
self._streaming_rename_labels) | |
else: | |
if self.dataset.features[self.label_col].dtype == 'string': | |
if not self.label_map: | |
self.label_map = {k: v for v, k in enumerate( | |
self.dataset.unique(self.label_col))} | |
self.dataset = self.dataset.filter( | |
lambda example: example[self.label_col] in self.label_map.keys()) | |
self.dataset = self.dataset.cast_column(self.label_col, datasets.ClassLabel( | |
num_classes=len(self.label_map), names=list(self.label_map.keys()))) | |
self.dataset = self.dataset.filter(lambda example: not any(x in [None, ""] for x in [ | |
example[key] for key in self._text_features + self.scalar_features + ([self.label_col] if self.label_col else [])])) # dropna | |
if self.balance_label_counts and self.label_col and not self.streaming_dataset: | |
label_datasets = {} | |
for label in list(self.label_map.values()): | |
label_dataset = self.dataset.filter( | |
lambda example: example[self.label_col] == label) | |
label_datasets[len(label_dataset)] = label_dataset | |
min_label_count = min(label_datasets) | |
sampled_datasets = [dataset.train_test_split(train_size=min_label_count, shuffle=True, seed=self.seed)[ | |
'train'] if len(dataset) != min_label_count else dataset for dataset in label_datasets.values()] | |
self.dataset = datasets.concatenate_datasets(sampled_datasets) | |
if self.clean_text: | |
self.dataset = self.dataset.map(self._clean_text, batched=not self.streaming_dataset, | |
batch_size=self.processing_batch_size) | |
self.dataset = self.dataset.map(self._truncate_and_strip_text, batched=not self.streaming_dataset, | |
batch_size=self.processing_batch_size) | |
def _streaming_rename_labels(self, example): | |
# rename labels according to label_map if not already correct labels | |
if isinstance(example[self.label_col], list): | |
example[self.label_col] = [self.label_map.get( | |
ex, None) for ex in example[self.label_col] if ex not in self.label_map.values()] | |
elif isinstance(example[self.label_col], str) and example[self.label_col] not in self.label_map.values(): | |
example[self.label_col] = self.label_map.get( | |
example[self.label_col], None) | |
else: | |
raise ValueError( | |
f'Type of example label is {type(example[self.label_col])} when list or string is allowed') | |
return example | |
def _clean_text(self, example): | |
for feat in self._text_features: | |
example[feat] = clean_text_funcs(example[feat])[0] if isinstance( | |
example[feat], str) else clean_text_funcs(example[feat]) | |
return example | |
def _truncate_and_strip_text(self, example): | |
# tokenizer will truncate to max_length tokens anyway so to save RAM let's truncate to max_length words already beforehand | |
# one word is usually one or more tokens so should be safe to truncate this way without losing information | |
for feat in self._text_features: | |
if isinstance(example[feat], list): | |
example[feat] = [ | |
' '.join(text.split()[:self.max_length]).strip() for text in example[feat] if text] | |
elif isinstance(example[feat], str): | |
example[feat] = ' '.join(example[feat].split()[ | |
:self.max_length]).strip() | |
elif example[feat] is None: | |
return None | |
else: | |
raise ValueError( | |
f'Type of example is {type(example[feat])} when list or string is allowed') | |
return example | |
def _encode(self, dataset): | |
encoded_dataset = None | |
for text_type in self.text_types: | |
encoded_text_type = dataset.map(lambda regret, recommendation: self.tokenizer(regret, recommendation, padding="max_length", truncation=True, max_length=self.max_length), batched=True, | |
batch_size=self.processing_batch_size, num_proc=self.processing_num_proc, input_columns=[f'regret_{text_type}', f'recommendation_{text_type}'], remove_columns=dataset.column_names) | |
encoded_text_type = encoded_text_type.rename_columns( | |
{col: f'{text_type}_{col}' for col in encoded_text_type.column_names}) # e.g. input_ids -> title_input_ids so we have separate input_ids for each text_type | |
if encoded_dataset: | |
encoded_dataset = datasets.concatenate_datasets( | |
[encoded_dataset, encoded_text_type], axis=1) | |
else: | |
encoded_dataset = encoded_text_type | |
# copy scalar features and label from original dataset to the encoded dataset | |
for scalar_feat in self.scalar_features: | |
encoded_dataset = encoded_dataset.add_column( | |
name=scalar_feat, column=dataset[scalar_feat]) | |
if self.label_col: | |
encoded_dataset = encoded_dataset.add_column( | |
name=self.label_col, column=dataset[self.label_col]) | |
if self.keep_video_ids_for_predictions: | |
for id in ['regret_id', "recommendation_id"]: | |
encoded_dataset = encoded_dataset.add_column( | |
name=id, column=dataset[id]) | |
encoded_dataset.set_format( | |
type='torch', columns=encoded_dataset.column_names) | |
return encoded_dataset | |
def _encode_streaming(self, dataset): | |
encoded_dataset = dataset.map(self._encode_on_the_fly, batched=True, | |
batch_size=self.processing_batch_size, remove_columns=list(set(self._stream_dataset_column_names)-set(self.scalar_features + ( | |
[self.label_col] if self.label_col else []) + (['regret_id', "recommendation_id"] if self.keep_video_ids_for_predictions else [])))) # IterableDataset doesn't have column_names attribute as normal Dataset | |
encoded_dataset = encoded_dataset.with_format("torch") | |
return encoded_dataset | |
def _encode_on_the_fly(self, batch): | |
for text_type in self.text_types: | |
encoded_text_type = dict(self.tokenizer( | |
batch[f'regret_{text_type}'], batch[f'recommendation_{text_type}'], padding="max_length", truncation=True, max_length=self.max_length, return_tensors="pt")) | |
for encoded_key in encoded_text_type.copy(): | |
encoded_text_type[f"{text_type}_{encoded_key}"] = encoded_text_type.pop(encoded_key) if not self.streaming_dataset else encoded_text_type.pop( | |
encoded_key).squeeze(0) # e.g. input_ids -> title_input_ids so we have separate input_ids for each text_type | |
del batch[f'regret_{text_type}'] | |
del batch[f'recommendation_{text_type}'] | |
batch.update(encoded_text_type) | |
for scalar_feat in self.scalar_features: | |
batch[scalar_feat] = torch.as_tensor( | |
batch[scalar_feat]) if not self.streaming_dataset else torch.as_tensor(batch[scalar_feat]).squeeze(0) | |
if self.label_col: | |
batch[self.label_col] = torch.as_tensor( | |
batch[self.label_col]) if not self.streaming_dataset else torch.as_tensor(batch[self.label_col]).squeeze(0) | |
return batch | |
class RRUM(pl.LightningModule): | |
def __init__(self, text_types, scalar_features, label_col, cross_encoder_model_name_or_path, optimizer_config=None, freeze_policy=None, pos_weight=None): | |
super().__init__() | |
self.save_hyperparameters() | |
self.text_types = text_types | |
self.scalar_features = scalar_features | |
self.label_col = label_col | |
self.optimizer_config = optimizer_config | |
self.cross_encoder_model_name_or_path = cross_encoder_model_name_or_path | |
self.cross_encoders = nn.ModuleDict({}) | |
for t in self.text_types: | |
self.cross_encoders[t] = AutoModelForSequenceClassification.from_pretrained( | |
self.cross_encoder_model_name_or_path) | |
if freeze_policy is not None: | |
for xe in self.cross_encoders.values(): | |
for name, param in xe.named_parameters(): | |
if freeze_policy(name): | |
param.requires_grad = False | |
cross_encoder_out_features = list(self.cross_encoders.values())[0]( | |
torch.randint(1, 2, (1, 2))).logits.size(dim=1) | |
self.lin1 = nn.Linear(len(self.cross_encoders) * cross_encoder_out_features + | |
len(self.scalar_features), 1) | |
self.ac_metric = torchmetrics.Accuracy() | |
self.pr_metric = torchmetrics.Precision() | |
self.re_metric = torchmetrics.Recall() | |
self.auc_metric = torchmetrics.AUROC() | |
if pos_weight: | |
self.loss = nn.BCEWithLogitsLoss( | |
pos_weight=torch.Tensor([pos_weight])) | |
else: | |
self.loss = nn.BCEWithLogitsLoss() | |
def forward(self, x): | |
cross_logits = {} | |
for f in self.text_types: | |
inputs = {key.split(f'{f}_')[1]: x[key] | |
for key in x if f in key} # e.g. title_input_ids -> input_ids since we have separate input_ids for each text_type | |
cross_logits[f] = self.cross_encoders[f](**inputs).logits | |
x = torch.cat([*cross_logits.values()] + | |
[x[scalar][:, None] for scalar in self.scalar_features], | |
1 | |
) | |
del cross_logits | |
x = self.lin1(x) | |
return x | |
def configure_optimizers(self): | |
if self.optimizer_config: | |
return self.optimizer_config(self) | |
optimizer = torch.optim.AdamW(self.parameters(), lr=5e-5) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, | |
num_warmup_steps=int( | |
self.trainer.estimated_stepping_batches * 0.05), | |
num_training_steps=self.trainer.estimated_stepping_batches, | |
) | |
scheduler = {'scheduler': scheduler, | |
'interval': 'step', 'frequency': 1} | |
return [optimizer], [scheduler] | |
def training_step(self, train_batch, batch_idx): | |
y = train_batch[self.label_col].unsqueeze(1).float() | |
logits = self(train_batch) | |
loss = self.loss(logits, y) | |
self.log('train_loss', loss) | |
return loss | |
def validation_step(self, val_batch, batch_idx): | |
y = val_batch[self.label_col].unsqueeze(1).float() | |
logits = self(val_batch) | |
loss = self.loss(logits, y) | |
self.ac_metric(logits, y.int()) | |
self.pr_metric(logits, y.int()) | |
self.re_metric(logits, y.int()) | |
self.auc_metric(logits, y.int()) | |
self.log('validation_accuracy', self.ac_metric) | |
self.log('validation_precision', self.pr_metric) | |
self.log('validation_recall', self.re_metric) | |
self.log('validation_auc', self.auc_metric) | |
self.log('val_loss', loss, prog_bar=True) | |
def validation_epoch_end(self, outputs): | |
self.log('validation_accuracy_ep', self.ac_metric) | |
self.log('validation_precision_ep', self.pr_metric) | |
self.log('validation_recall_ep', self.re_metric) | |
self.log('validation_auc_ep', self.auc_metric) | |