Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification | |
from PIL import Image, ImageDraw, ImageFont | |
from utils import OCR, unnormalize_box | |
labels = ["O", "B-MENU.NM", "B-MENU.NUM", "B-MENU.UNITPRICE", "B-MENU.CNT", "B-MENU.DISCOUNTPRICE", "B-MENU.PRICE", "B-MENU.ITEMSUBTOTAL", "B-MENU.VATYN", "B-MENU.ETC", "B-MENU.SUB.NM", "B-MENU.SUB.UNITPRICE", "B-MENU.SUB.CNT", "B-MENU.SUB.PRICE", "B-MENU.SUB.ETC", "B-VOID_MENU.NM", "B-VOID_MENU.PRICE", "B-SUB_TOTAL.SUBTOTAL_PRICE", "B-SUB_TOTAL.DISCOUNT_PRICE", "B-SUB_TOTAL.SERVICE_PRICE", "B-SUB_TOTAL.OTHERSVC_PRICE", "B-SUB_TOTAL.TAX_PRICE", "B-SUB_TOTAL.ETC", "B-TOTAL.TOTAL_PRICE", "B-TOTAL.TOTAL_ETC", "B-TOTAL.CASHPRICE", "B-TOTAL.CHANGEPRICE", "B-TOTAL.CREDITCARDPRICE", "B-TOTAL.EMONEYPRICE", "B-TOTAL.MENUTYPE_CNT", "B-TOTAL.MENUQTY_CNT", "I-MENU.NM", "I-MENU.NUM", "I-MENU.UNITPRICE", "I-MENU.CNT", "I-MENU.DISCOUNTPRICE", "I-MENU.PRICE", "I-MENU.ITEMSUBTOTAL", "I-MENU.VATYN", "I-MENU.ETC", "I-MENU.SUB.NM", "I-MENU.SUB.UNITPRICE", "I-MENU.SUB.CNT", "I-MENU.SUB.PRICE", "I-MENU.SUB.ETC", "I-VOID_MENU.NM", "I-VOID_MENU.PRICE", "I-SUB_TOTAL.SUBTOTAL_PRICE", "I-SUB_TOTAL.DISCOUNT_PRICE", "I-SUB_TOTAL.SERVICE_PRICE", "I-SUB_TOTAL.OTHERSVC_PRICE", "I-SUB_TOTAL.TAX_PRICE", "I-SUB_TOTAL.ETC", "I-TOTAL.TOTAL_PRICE", "I-TOTAL.TOTAL_ETC", "I-TOTAL.CASHPRICE", "I-TOTAL.CHANGEPRICE", "I-TOTAL.CREDITCARDPRICE", "I-TOTAL.EMONEYPRICE", "I-TOTAL.MENUTYPE_CNT", "I-TOTAL.MENUQTY_CNT"] | |
id2label = {v: k for v, k in enumerate(labels)} | |
label2id = {k: v for v, k in enumerate(labels)} | |
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-cord", apply_ocr=False) | |
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-cord", apply_ocr=False) | |
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-cord") | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
def prediction(image_path: str): | |
image = Image.open(image_path).convert('RGB') | |
boxes, words = OCR(image_path) | |
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True) | |
offset_mapping = encoding.pop('offset_mapping') | |
for k, v in encoding.items(): | |
encoding[k] = v.to(device) | |
outputs = model(**encoding) | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
inp_ids = encoding.input_ids.squeeze().tolist() | |
inp_words = [tokenizer.decode(i) for i in inp_ids] | |
width, height = image.size | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
true_words = [] | |
for id, i in enumerate(inp_words): | |
if not is_subword[id]: | |
true_words.append(i) | |
else: | |
true_words[-1] = true_words[-1]+i | |
true_predictions = true_predictions[1:-1] | |
true_boxes = true_boxes[1:-1] | |
true_words = true_words[1:-1] | |
preds = [] | |
l_words = [] | |
bboxes = [] | |
for i, j in enumerate(true_predictions): | |
if j != 'others': | |
preds.append(true_predictions[i]) | |
l_words.append(true_words[i]) | |
bboxes.append(true_boxes[i]) | |
d = {} | |
for id, i in enumerate(preds): | |
if i not in d.keys(): | |
d[i] = l_words[id] | |
else: | |
d[i] = d[i] + ", " + l_words[id] | |
d = {k: v.strip() for (k, v) in d.items()} | |
# TODO: process the json | |
draw = ImageDraw.Draw(image, "RGBA") | |
font = ImageFont.load_default() | |
for prediction, box in zip(preds, bboxes): | |
draw.rectangle(box) | |
draw.text((box[0]+10, box[1]-10), text=prediction, font=font, fill="black") | |
return d, image | |