Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,15 @@ import json
|
|
5 |
|
6 |
def prediction(image):
|
7 |
|
8 |
-
#we first use
|
|
|
9 |
j1, image_blurred = sroie_prediction(image)
|
10 |
|
11 |
-
#then we use the model fine-tuned on
|
12 |
img = image_blurred.copy()
|
13 |
j2, image_final = cord_prediction(img)
|
14 |
|
15 |
-
#
|
16 |
if len(j1) == 0:
|
17 |
j3 = j2
|
18 |
else:
|
@@ -22,8 +23,8 @@ def prediction(image):
|
|
22 |
|
23 |
|
24 |
title = "Interactive demo: LayoutLMv3 for receipts"
|
25 |
-
description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular model
|
26 |
-
examples = [['image.jpeg']]
|
27 |
|
28 |
css = """.output_image, .input_image {height: 600px !important}"""
|
29 |
|
|
|
5 |
|
6 |
def prediction(image):
|
7 |
|
8 |
+
# we first use the model fine-tuned on sroie (for now it is Theivaprakasham/layoutlmv3-finetuned-sroie)
|
9 |
+
# on the image, which gives us a JSON with some info and we blur the corresponding boxes
|
10 |
j1, image_blurred = sroie_prediction(image)
|
11 |
|
12 |
+
# then we use the model fine-tuned on cord on the blurred image
|
13 |
img = image_blurred.copy()
|
14 |
j2, image_final = cord_prediction(img)
|
15 |
|
16 |
+
# link the two json files
|
17 |
if len(j1) == 0:
|
18 |
j3 = j2
|
19 |
else:
|
|
|
23 |
|
24 |
|
25 |
title = "Interactive demo: LayoutLMv3 for receipts"
|
26 |
+
description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular space uses two instances of the model, one fine-tuned on CORD and the other SROIE.\n It firsts uses the fine-tune on SROIE to extract date, company and address, then the fine-tune on CORD for the other info. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
|
27 |
+
examples = [['image.jpeg']['image.png']]
|
28 |
|
29 |
css = """.output_image, .input_image {height: 600px !important}"""
|
30 |
|