import torch import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification from utils import OCR, unnormalize_box # [B-COMPANY", "I-COMPANY", "B-DATE", "I-DATE", "B-ADDRESS", "I-ADDRESS", "B-TOTAL", "I-TOTAL", "O"] labels = ["COMPANY", "COMPANY", "DATE", "DATE", "ADDRESS", "ADDRESS", "TOTAL", "TOTAL", "O"] id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-finetuned-sroie", apply_ocr=False) processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-finetuned-sroie", apply_ocr=False) model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-finetuned-sroie") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) def blur(image, boxes): image = np.array(image) for box in boxes: blur_x = int(box[0]) blur_y = int(box[1]) blur_width = int(box[2]-box[0]) blur_height = int(box[3]-box[1]) roi = image[blur_y:blur_y + blur_height, blur_x:blur_x + blur_width] blur_image = cv2.GaussianBlur(roi, (201, 201), 0) image[blur_y:blur_y + blur_height, blur_x:blur_x + blur_width] = blur_image return Image.fromarray(image, 'RGB') def prediction(image): boxes, words = OCR(image) encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True) offset_mapping = encoding.pop('offset_mapping') for k, v in encoding.items(): encoding[k] = v.to(device) outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() probabilities = torch.softmax(outputs.logits, dim=-1) confidence_scores = probabilities.max(-1).values.squeeze().tolist() inp_ids = encoding.input_ids.squeeze().tolist() inp_words = [tokenizer.decode(i) for i in inp_ids] width, height = image.size is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]] true_words = [] for id, i in enumerate(inp_words): if not is_subword[id]: true_words.append(i) else: true_words[-1] = true_words[-1]+i true_predictions = true_predictions[1:-1] true_boxes = true_boxes[1:-1] true_words = true_words[1:-1] true_confidence_scores = true_confidence_scores[1:-1] #for i, j in enumerate(true_confidence_scores): # if j < 0.8: ##################################### # true_predictions[i] = "O" d = {} for id, i in enumerate(true_predictions): if i not in d.keys(): d[i] = true_words[id] else: d[i] = d[i] + ", " + true_words[id] d = {k: v.strip() for (k, v) in d.items()} if "O" in d: d.pop("O") if "TOTAL" in d: d.pop("TOTAL") blur_boxes = [] for prediction, box in zip(true_predictions, true_boxes): if prediction != 'O' and prediction != 'TOTAL': blur_boxes.append(box) image = (blur(image, blur_boxes)) draw = ImageDraw.Draw(image, "RGBA") font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): draw.rectangle(box) draw.text((box[0]+10, box[1]-10), text=prediction, font=font, fill="black", font_size="8") return d, image