import gradio as gr from PIL import Image import shutil import pickle import random import json import os if not os.path.exists("./data/pacs/"): shutil.unpack_archive("./data/pacs.zip", './data/', 'zip') METHODS = { "Textual Inversion (LDM)": "textualinversion_ldm", "Textual Inversion (Stable Diffusion)": "none_with_emb_without_multires", "DreamBooth": "unet_without_emb_without_multires", "Custom Diffusion": "kv_with_emb_without_multires", } for method in list(METHODS.values()): if not os.path.exists(f"./data/imagenet/images/{method}"): shutil.unpack_archive(f"./data/imagenet/images/{method}.zip", f"./", 'zip') if not os.path.exists(f"./data/imagenet/compositions/images/{method}"): shutil.unpack_archive(f"./data/imagenet/compositions/images/{method}.zip", f"./", 'zip') method="original" if not os.path.exists(f"./data/imagenet/images/{method}"): shutil.unpack_archive(f"./data/imagenet/images/{method}.zip", f"./", 'zip') print("Ready to go") CONCEPTS = { "Art Painting": "art_painting", "Cartoon": "cartoon", "Photo": "photo", "Sketch": "sketch", } DOMAINS = ["art_painting", "cartoon", "photo", "sketch"] with open("./data/imagenet/imagenet_mapping.pkl", "rb") as h: imagenet_mapping = pickle.load(h) OBJECTS = [] for k,v in imagenet_mapping.items(): CONCEPTS[f"{k}:{v}"] = k OBJECTS.append(f"{k}:{v}") def get_domains(method, concept): gen_cls=random.choice(os.listdir(os.path.join('./data/pacs', method, concept))) fname=random.choice(os.listdir(os.path.join('./data/pacs', method, concept, gen_cls))) gen_img = Image.open(os.path.join('./data/pacs', method, concept, gen_cls, fname)).resize((128, 128)) ref_images = [] for i in range(3): cls=random.choice(os.listdir(os.path.join('./data/pacs', 'original', concept))) fname=random.choice(os.listdir(os.path.join('./data/pacs', 'original', concept, cls))) img = Image.open(os.path.join('./data/pacs', 'original', concept, cls, fname)).resize((128, 128)) ref_images.append(img) return gen_img, f"a photo of {gen_cls} in the style of {concept}", ref_images def get_objects(method, concept, evaluation): if evaluation=="Concept Alignment": gen_cls = "" if "ldm" in method: gen_cls="samples" fname=random.choice(os.listdir(os.path.join('./data/imagenet/images', method, concept, gen_cls))) gen_img = Image.open(os.path.join('./data/imagenet/images', method, concept, gen_cls, fname)).resize((128, 128)) ref_images = [] for i in range(3): fname=random.choice(os.listdir(os.path.join('./data/imagenet/images', 'original', concept))) img = Image.open(os.path.join('./data/imagenet/images', 'original', concept, fname)).resize((128, 128)) ref_images.append(img) return gen_img, f"a photo of **{imagenet_mapping[concept]}**", ref_images else: gen_cls = "" if "ldm" in method: gen_cls="samples" with open(f"./data/imagenet/compositions/prompts/{concept}.json", "r") as h: prompts = json.load(h) fname=random.choice(os.listdir(os.path.join('./data/imagenet/compositions/images', method, concept, gen_cls))) gen_img = Image.open(os.path.join('./data/imagenet/compositions/images', method, concept, gen_cls, fname)).resize((128, 128)) idx = int(fname.split("_")[0]) caption = prompts[idx]["caption"].replace(prompts[idx]["entity"], f"**{prompts[idx]['entity']}**") ref_images = [] for i in range(3): fname=random.choice(os.listdir(os.path.join('./data/imagenet/images', 'original', concept))) img = Image.open(os.path.join('./data/imagenet/images', 'original', concept, fname)).resize((128, 128)) ref_images.append(img) return gen_img, caption, ref_images def get_images(method, concept, evaluation): method = METHODS[method] concept = CONCEPTS[concept] if concept in DOMAINS: images, captions, ref_images = get_domains(method, concept) return images, captions, ref_images elif concept in list(imagenet_mapping.keys()): images, captions, ref_images = get_objects(method, concept, evaluation) return images, captions, ref_images else: return css=''' #image_upload{min-height:4px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{max-height: 5} ''' image_blocks = gr.Blocks(css=css) with image_blocks as demo: # with gr.Blocks() as demo: gr.Markdown("

ConceptBed Benchmark Explorer

") gr.Markdown("

Project Page | Paper

") gr.Markdown(""" ## How to interpret results: 1. The shown three images are reference concept images learned by the diffusion model. 2. The output target concept image is generated by Stable Diffusion using selected methodologies. 3. The output text indicates the prompt used to generate the image. # """) gr.Markdown(""" ## Types of evaluations: 1. Concept Alignment: available for all concepts 2. Compositional Reasoning: available for all concepts except -- Art Painting, Cartoon, Sketch, Photo # """) gr.Markdown(""" ### For further details on the ConceptBed benchmark, please refer to the paper at: https://arxiv.org/abs/2306.04695 # """) with gr.Row(): with gr.Column(): methods1 = gr.Dropdown( list(METHODS.keys()), label="Concept Learner", info="Select a concept learning strategy." ) concept1 = gr.Dropdown( list(CONCEPTS.keys()), label="Concept", info="Select a concept." ) evaluation1 = gr.Dropdown( ["Concept Alignment", "Compositional Reasoning"], label="Evaluation Type", info="Select the evaluation type." ) gallery1 = gr.Gallery( label="Reference images", show_label=False, elem_id="gallery", ).style( columns=[3], rows=[1], height="200px" ) # image1 = gr.Gallery( # label="Reference images", # show_label=False, # elem_id="gallery", # ).style( # columns=[1], rows=[1], height="200px" # ) image1 = gr.Image()#.style(height="200px", width="200px") text1 = gr.Textbox(label="Caption used to generate above image") btn1 = gr.Button(value="Get Image", full_width=False) with gr.Column(): methods2 = gr.Dropdown( list(METHODS.keys()), label="Concept Learner", info="Select a concept learning strategy." ) concept2 = gr.Dropdown( list(CONCEPTS.keys()), label="Concept", info="Select a concept." ) evaluation2 = gr.Dropdown( ["Concept Alignment", "Compositional Reasoning"], label="Evaluation Type", info="Select the evaluation type." ) gallery2 = gr.Gallery( label="Reference images", show_label=False, elem_id="gallery", ).style( columns=[3], rows=[1], height="200px" ) image2 = gr.Image(elem_id="image_upload") text2 = gr.Textbox(label="Caption used to generate above image") btn2 = gr.Button(value="Get Image", full_width=False) btn1.click(get_images, inputs=[methods1, concept1, evaluation1], outputs=[image1, text1, gallery1]) btn2.click(get_images, inputs=[methods2, concept2, evaluation2], outputs=[image2, text2, gallery2]) with gr.Accordion(label="Notes", open=False): gr.HTML( """

Generated Images:

As ConceptBed evaluations required training of 1000+ models (one for each concept), it is impossible to host a live demo. Therefore, we generate 200,000+ images and randomly select a few images for this demo. """ ) if __name__ == "__main__": demo.launch()