File size: 6,171 Bytes
09481f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import math
import torch.nn as nn
import pdb

from espnet.nets.pytorch_backend.transformer.convolution import Swish


def conv3x3(in_planes, out_planes, stride=1):
    """conv3x3.

    :param in_planes: int, number of channels in the input sequence.
    :param out_planes: int,  number of channels produced by the convolution.
    :param stride: int, size of the convolving kernel.
    """
    return nn.Conv1d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False,
    )


def downsample_basic_block(inplanes, outplanes, stride):
    """downsample_basic_block.

    :param inplanes: int, number of channels in the input sequence.
    :param outplanes: int, number of channels produced by the convolution.
    :param stride: int, size of the convolving kernel.
    """
    return  nn.Sequential(
        nn.Conv1d(
            inplanes,
            outplanes,
            kernel_size=1,
            stride=stride,
            bias=False,
        ),
        nn.BatchNorm1d(outplanes),
    )


class BasicBlock1D(nn.Module):
    expansion = 1

    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        relu_type="relu",
    ):
        """__init__.

        :param inplanes: int, number of channels in the input sequence.
        :param planes: int,  number of channels produced by the convolution.
        :param stride: int, size of the convolving kernel.
        :param downsample: boolean, if True, the temporal resolution is downsampled.
        :param relu_type: str, type of activation function.
        """
        super(BasicBlock1D, self).__init__()

        assert relu_type in ["relu","prelu", "swish"]

        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm1d(planes)

        # type of ReLU is an input option
        if relu_type == "relu":
            self.relu1 = nn.ReLU(inplace=True)
            self.relu2 = nn.ReLU(inplace=True)
        elif relu_type == "prelu":
            self.relu1 = nn.PReLU(num_parameters=planes)
            self.relu2 = nn.PReLU(num_parameters=planes)
        elif relu_type == "swish":
            self.relu1 = Swish()
            self.relu2 = Swish()
        else:
            raise NotImplementedError
        # --------

        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm1d(planes)
        
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        """forward.

        :param x: torch.Tensor, input tensor with input size (B, C, T)
        """
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu2(out)

        return out


class ResNet1D(nn.Module):

    def __init__(self,
        block,
        layers,
        relu_type="swish",
        a_upsample_ratio=1,
    ):
        """__init__.

        :param block: torch.nn.Module, class of blocks.
        :param layers: List, customised layers in each block.
        :param relu_type: str, type of activation function.
        :param a_upsample_ratio: int, The ratio related to the \
            temporal resolution of output features of the frontend. \
            a_upsample_ratio=1 produce features with a fps of 25.
        """
        super(ResNet1D, self).__init__()
        self.inplanes = 64
        self.relu_type = relu_type
        self.downsample_block = downsample_basic_block
        self.a_upsample_ratio = a_upsample_ratio

        self.conv1 = nn.Conv1d(
            in_channels=1,
            out_channels=self.inplanes,
            kernel_size=80,
            stride=4,
            padding=38,
            bias=False,
        )
        self.bn1 = nn.BatchNorm1d(self.inplanes)

        if relu_type == "relu":
            self.relu = nn.ReLU(inplace=True)
        elif relu_type == "prelu":
            self.relu = nn.PReLU(num_parameters=self.inplanes)
        elif relu_type == "swish":
            self.relu = Swish()

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool1d(
            kernel_size=20//self.a_upsample_ratio,
            stride=20//self.a_upsample_ratio,
        )


    def _make_layer(self, block, planes, blocks, stride=1):
        """_make_layer.

        :param block: torch.nn.Module, class of blocks.
        :param planes: int,  number of channels produced by the convolution.
        :param blocks: int, number of layers in a block.
        :param stride: int, size of the convolving kernel.
        """

        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = self.downsample_block(
                inplanes=self.inplanes,
                outplanes=planes*block.expansion,
                stride=stride,
            )

        layers = []
        layers.append(
            block(
                self.inplanes,
                planes,
                stride,
                downsample,
                relu_type=self.relu_type,
            )
        )
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    relu_type=self.relu_type,
                )
            )

        return nn.Sequential(*layers)

    def forward(self, x):
        """forward.

        :param x: torch.Tensor, input tensor with input size (B, C, T)
        """
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        return x