File size: 5,938 Bytes
09481f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""Scorer interface module."""

from typing import Any
from typing import List
from typing import Tuple

import torch
import warnings


class ScorerInterface:
    """Scorer interface for beam search.

    The scorer performs scoring of the all tokens in vocabulary.

    Examples:
        * Search heuristics
            * :class:`espnet.nets.scorers.length_bonus.LengthBonus`
        * Decoder networks of the sequence-to-sequence models
            * :class:`espnet.nets.pytorch_backend.nets.transformer.decoder.Decoder`
            * :class:`espnet.nets.pytorch_backend.nets.rnn.decoders.Decoder`
        * Neural language models
            * :class:`espnet.nets.pytorch_backend.lm.transformer.TransformerLM`
            * :class:`espnet.nets.pytorch_backend.lm.default.DefaultRNNLM`
            * :class:`espnet.nets.pytorch_backend.lm.seq_rnn.SequentialRNNLM`

    """

    def init_state(self, x: torch.Tensor) -> Any:
        """Get an initial state for decoding (optional).

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        return None

    def select_state(self, state: Any, i: int, new_id: int = None) -> Any:
        """Select state with relative ids in the main beam search.

        Args:
            state: Decoder state for prefix tokens
            i (int): Index to select a state in the main beam search
            new_id (int): New label index to select a state if necessary

        Returns:
            state: pruned state

        """
        return None if state is None else state[i]

    def score(
        self, y: torch.Tensor, state: Any, x: torch.Tensor
    ) -> Tuple[torch.Tensor, Any]:
        """Score new token (required).

        Args:
            y (torch.Tensor): 1D torch.int64 prefix tokens.
            state: Scorer state for prefix tokens
            x (torch.Tensor): The encoder feature that generates ys.

        Returns:
            tuple[torch.Tensor, Any]: Tuple of
                scores for next token that has a shape of `(n_vocab)`
                and next state for ys

        """
        raise NotImplementedError

    def final_score(self, state: Any) -> float:
        """Score eos (optional).

        Args:
            state: Scorer state for prefix tokens

        Returns:
            float: final score

        """
        return 0.0


class BatchScorerInterface(ScorerInterface):
    """Batch scorer interface."""

    def batch_init_state(self, x: torch.Tensor) -> Any:
        """Get an initial state for decoding (optional).

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        return self.init_state(x)

    def batch_score(
        self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor
    ) -> Tuple[torch.Tensor, List[Any]]:
        """Score new token batch (required).

        Args:
            ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
            states (List[Any]): Scorer states for prefix tokens.
            xs (torch.Tensor):
                The encoder feature that generates ys (n_batch, xlen, n_feat).

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, n_vocab)`
                and next state list for ys.

        """
        warnings.warn(
            "{} batch score is implemented through for loop not parallelized".format(
                self.__class__.__name__
            )
        )
        scores = list()
        outstates = list()
        for i, (y, state, x) in enumerate(zip(ys, states, xs)):
            score, outstate = self.score(y, state, x)
            outstates.append(outstate)
            scores.append(score)
        scores = torch.cat(scores, 0).view(ys.shape[0], -1)
        return scores, outstates


class PartialScorerInterface(ScorerInterface):
    """Partial scorer interface for beam search.

    The partial scorer performs scoring when non-partial scorer finished scoring,
    and receives pre-pruned next tokens to score because it is too heavy to score
    all the tokens.

    Examples:
         * Prefix search for connectionist-temporal-classification models
             * :class:`espnet.nets.scorers.ctc.CTCPrefixScorer`

    """

    def score_partial(
        self, y: torch.Tensor, next_tokens: torch.Tensor, state: Any, x: torch.Tensor
    ) -> Tuple[torch.Tensor, Any]:
        """Score new token (required).

        Args:
            y (torch.Tensor): 1D prefix token
            next_tokens (torch.Tensor): torch.int64 next token to score
            state: decoder state for prefix tokens
            x (torch.Tensor): The encoder feature that generates ys

        Returns:
            tuple[torch.Tensor, Any]:
                Tuple of a score tensor for y that has a shape `(len(next_tokens),)`
                and next state for ys

        """
        raise NotImplementedError


class BatchPartialScorerInterface(BatchScorerInterface, PartialScorerInterface):
    """Batch partial scorer interface for beam search."""

    def batch_score_partial(
        self,
        ys: torch.Tensor,
        next_tokens: torch.Tensor,
        states: List[Any],
        xs: torch.Tensor,
    ) -> Tuple[torch.Tensor, Any]:
        """Score new token (required).

        Args:
            ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen).
            next_tokens (torch.Tensor): torch.int64 tokens to score (n_batch, n_token).
            states (List[Any]): Scorer states for prefix tokens.
            xs (torch.Tensor):
                The encoder feature that generates ys (n_batch, xlen, n_feat).

        Returns:
            tuple[torch.Tensor, Any]:
                Tuple of a score tensor for ys that has a shape `(n_batch, n_vocab)`
                and next states for ys
        """
        raise NotImplementedError