auto_avsr / app.py
mpc001's picture
Update app.py
ccfc7d3
raw
history blame
3.46 kB
import os
import gradio as gr
from pipelines.pipeline import InferencePipeline
TITLE = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Auto-AVSR: Audio-Visual Speech Recognition
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Want to recognize content in a noisy environment?<br>Our Auto-AVSR models are here to transcribe your answers from audio or visual information!
</p>
</div>
"""
ARTICLE = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<p>
Want to look into models? You can find our [<a href="https://github.com/mpc001/auto_avsr">training code</a>] and [<a href="https://arxiv.org/abs/2303.14307">paper</a>].
</p>
<p>
The inference is performed on the CPU. You can also run on <a href="https://colab.research.google.com/drive/1jfb6e4xxhXHbmQf-nncdLno1u0b4j614?usp=sharing">Colab GPU</a>
</p>
<p>
We share this demo only for non-commercial purposes.
</p>
</div>
"""
CSS = """
#col-container {margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
pipelines = {
"VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"),
"ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"),
"AVSR(mediapipe)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cpu", face_track=True, detector="mediapipe")
}
def fn(pipeline_type, filename):
selected_pipeline_instance = pipelines[pipeline_type]
landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None)
data = selected_pipeline_instance.dataloader.load_data(filename, landmarks)
transcript = selected_pipeline_instance.model.infer(data)
return transcript
demo = gr.Blocks(css=CSS)
with demo:
gr.HTML(TITLE)
dropdown_list = gr.inputs.Dropdown(["ASR", "VSR(mediapipe)", "AVSR(mediapipe)"], label="model")
video_file = gr.Video(label="INPUT VIDEO", include_audio=True)
text = gr.Textbox(label="PREDICTION")
btn = gr.Button("Submit").style(full_width=True)
btn.click(fn, inputs=[dropdown_list, video_file], outputs=text)
gr.HTML(ARTICLE)
demo.launch()