Spaces:
Runtime error
Runtime error
"""Language model interface.""" | |
import argparse | |
from espnet.nets.scorer_interface import ScorerInterface | |
from espnet.utils.dynamic_import import dynamic_import | |
from espnet.utils.fill_missing_args import fill_missing_args | |
class LMInterface(ScorerInterface): | |
"""LM Interface for ESPnet model implementation.""" | |
def add_arguments(parser): | |
"""Add arguments to command line argument parser.""" | |
return parser | |
def build(cls, n_vocab: int, **kwargs): | |
"""Initialize this class with python-level args. | |
Args: | |
idim (int): The number of vocabulary. | |
Returns: | |
LMinterface: A new instance of LMInterface. | |
""" | |
# local import to avoid cyclic import in lm_train | |
from espnet.bin.lm_train import get_parser | |
def wrap(parser): | |
return get_parser(parser, required=False) | |
args = argparse.Namespace(**kwargs) | |
args = fill_missing_args(args, wrap) | |
args = fill_missing_args(args, cls.add_arguments) | |
return cls(n_vocab, args) | |
def forward(self, x, t): | |
"""Compute LM loss value from buffer sequences. | |
Args: | |
x (torch.Tensor): Input ids. (batch, len) | |
t (torch.Tensor): Target ids. (batch, len) | |
Returns: | |
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of | |
loss to backward (scalar), | |
negative log-likelihood of t: -log p(t) (scalar) and | |
the number of elements in x (scalar) | |
Notes: | |
The last two return values are used | |
in perplexity: p(t)^{-n} = exp(-log p(t) / n) | |
""" | |
raise NotImplementedError("forward method is not implemented") | |
predefined_lms = { | |
"pytorch": { | |
"default": "espnet.nets.pytorch_backend.lm.default:DefaultRNNLM", | |
"seq_rnn": "espnet.nets.pytorch_backend.lm.seq_rnn:SequentialRNNLM", | |
"transformer": "espnet.nets.pytorch_backend.lm.transformer:TransformerLM", | |
}, | |
"chainer": {"default": "espnet.lm.chainer_backend.lm:DefaultRNNLM"}, | |
} | |
def dynamic_import_lm(module, backend): | |
"""Import LM class dynamically. | |
Args: | |
module (str): module_name:class_name or alias in `predefined_lms` | |
backend (str): NN backend. e.g., pytorch, chainer | |
Returns: | |
type: LM class | |
""" | |
model_class = dynamic_import(module, predefined_lms.get(backend, dict())) | |
assert issubclass( | |
model_class, LMInterface | |
), f"{module} does not implement LMInterface" | |
return model_class | |