mpc001 commited on
Commit
a35325d
1 Parent(s): a77ecd8
Files changed (1) hide show
  1. app.py +82 -0
app.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/env python
2
+ # -*- coding: utf-8 -*-
3
+
4
+ # Copyright 2023 Imperial College London (Pingchuan Ma)
5
+ # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
6
+ import os
7
+ import datetime
8
+ import subprocess
9
+ import gradio as gr
10
+ from pipelines.pipeline import InferencePipeline
11
+
12
+ FFMPEG_COMMAND = "-loglevel error -y -r 25 -pix_fmt yuv420p -f mp4"
13
+ pipelines = {
14
+ "VSR": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cuda:0", face_track=True, detector="retinaface"),
15
+ "VSR(fast)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cuda:0", face_track=True, detector="mediapipe"),
16
+ "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cuda:0", face_track=True, detector="retinaface"),
17
+ "AVSR": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cuda:0", face_track=True, detector="retinaface"),
18
+ "AVSR(fast)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cuda:0", face_track=True, detector="mediapipe")
19
+ }
20
+ print("Step 0. Model has been loaded.")
21
+
22
+ def fn(pipeline_type, filename):
23
+ directory = "./tmp_video"
24
+ if not os.path.exists(directory):
25
+ os.makedirs(directory)
26
+ now = datetime.datetime.now()
27
+ timestamp = now.strftime("%Y-%m-%d_%H-%M-%S")
28
+ dst_filename = f"{directory}/file_{timestamp}.mp4"
29
+ command_string = f"ffmpeg -i {filename} {FFMPEG_COMMAND} {dst_filename}"
30
+ print("Step 0. Video has been uploaded.")
31
+ os.system(command_string)
32
+ selected_pipeline_instance = pipelines[pipeline_type]
33
+ print("Step 1. Video has been converted.")
34
+ landmarks = selected_pipeline_instance.process_landmarks(dst_filename, landmarks_filename=None)
35
+ print("Step 2. Landmarks have been detected.")
36
+ data = selected_pipeline_instance.dataloader.load_data(dst_filename, landmarks)
37
+ print("Step 3. Data has been preprocessed.")
38
+ transcript = selected_pipeline_instance.model.infer(data)
39
+ print("Step 4. Inference has been done.")
40
+ print(f"transcript: {transcript}")
41
+ return transcript
42
+
43
+ demo = gr.Blocks()
44
+
45
+ with demo:
46
+ gr.HTML(
47
+ """
48
+ <div style="text-align: center; max-width: 700px; margin: 0 auto;">
49
+ <div
50
+ style="
51
+ display: inline-flex;
52
+ align-items: center;
53
+ gap: 0.8rem;
54
+ font-size: 1.75rem;
55
+ "
56
+ >
57
+ <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
58
+ Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels
59
+ </h1>
60
+ </div>
61
+ <p style="margin-bottom: 10px; font-size: 94%">
62
+ </p>
63
+ </div>
64
+ """
65
+ )
66
+ dropdown_list = gr.inputs.Dropdown(["VSR", "ASR", "AVSR", "VSR(fast)", "AVSR(fast)"], label="model")
67
+ video_file = gr.Video(label="INPUT VIDEO", include_audio=True)
68
+ text = gr.Textbox(label="PREDICTION")
69
+ btn = gr.Button("Submit").style(full_width=True)
70
+
71
+ btn.click(fn, inputs=[dropdown_list, video_file], outputs=text)
72
+
73
+ with gr.Accordion("Additional information", open=False):
74
+ gr.HTML(
75
+ """
76
+ <div class="acknowledgments">
77
+ <p> We share this demo only for non-commercial purposes. </p>
78
+ </div>
79
+ """
80
+ )
81
+
82
+ demo.launch(share=True)