Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import speech_recognition as sr | |
import difflib | |
import gradio as gr | |
from gtts import gTTS | |
import io | |
from pydub import AudioSegment | |
import time | |
import eng_to_ipa as ipa | |
# Create audio directory if it doesn't exist | |
if not os.path.exists('audio'): | |
os.makedirs('audio') | |
# Step 2: Create pronunciation audio for incorrect words | |
def upfilepath(local_filename): | |
ts = time.time() | |
upload_url = f"https://mr2along-speech-recognize.hf.space/gradio_api/upload?upload_id={ts}" | |
files = {'files': open(local_filename, 'rb')} | |
try: | |
response = requests.post(upload_url, files=files, timeout=30) | |
if response.status_code == 200: | |
result = response.json() | |
extracted_path = result[0] | |
return extracted_path | |
else: | |
return None | |
except requests.exceptions.Timeout: | |
return "Request timed out. Please try again." | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Step 1: Transcribe the audio file | |
def transcribe_audio(audio): | |
if audio is None: | |
return "No audio file provided." | |
recognizer = sr.Recognizer() | |
if not os.path.isfile(audio): | |
return "Audio file not found." | |
audio_format = audio.split('.')[-1].lower() | |
if audio_format != 'wav': | |
try: | |
audio_segment = AudioSegment.from_file(audio) | |
wav_path = audio.replace(audio_format, 'wav') | |
audio_segment.export(wav_path, format='wav') | |
audio = wav_path | |
except Exception as e: | |
return f"Error converting audio: {e}" | |
audio_file = sr.AudioFile(audio) | |
with audio_file as source: | |
audio_data = recognizer.record(source) | |
try: | |
transcription = recognizer.recognize_google(audio_data) | |
return transcription | |
except sr.UnknownValueError: | |
return "Google Speech Recognition could not understand the audio." | |
except sr.RequestError as e: | |
return f"Error with Google Speech Recognition service: {e}" | |
# Function to get IPA transcription | |
def ipa_transcription(sentence): | |
try: | |
ipa_text = ipa.convert(sentence) | |
return ipa_text | |
except Exception as e: | |
return f"Error during IPA transcription: {e}" | |
# Step 2: Create pronunciation audio for incorrect words (locally) | |
def create_pronunciation_audio(word): | |
try: | |
tts = gTTS(word) | |
audio_file_path = f"audio/{word}.mp3" | |
tts.save(audio_file_path) | |
return audio_file_path # Return the local path instead of uploading | |
except Exception as e: | |
return f"Failed to create pronunciation audio: {e}" | |
# Step 3: Compare the transcribed text with the input paragraph | |
def compare_texts(reference_text, transcribed_text): | |
reference_words = reference_text.split() | |
transcribed_words = transcribed_text.split() | |
incorrect_words_audios = [] # Store audio paths for incorrect words | |
word_score_list = [] # To store each word's score | |
sm = difflib.SequenceMatcher(None, reference_text, transcribed_text) | |
similarity_score = round(sm.ratio() * 100, 2) | |
# Construct HTML output with detailed fidelity class | |
html_output = f"<strong>Fidelity Class:</strong> " | |
if similarity_score >= 85: | |
html_output += f"<strong>GOOD (>=85%)</strong><br>" | |
elif similarity_score >= 70: | |
html_output += f"<strong>ACCEPTABLE (70% - 85%)</strong><br>" | |
elif similarity_score >= 50: | |
html_output += f"<strong>NEEDS IMPROVEMENT (50% - 70%)</strong><br>" | |
else: | |
html_output += f"<strong>POOR (<50%)</strong><br>" | |
html_output += f"<strong>Quality Score:</strong> {similarity_score}%<br>" | |
html_output += f"<strong>Transcribed Text:</strong> {transcribed_text}<br>" | |
html_output += f"<strong>IPA Transcription:</strong> {ipa_transcription(reference_text)}<br>" | |
html_output += "<strong>Word Score List:</strong><br>" | |
# Generate colored word score list | |
for i, word in enumerate(reference_words): | |
try: | |
if word.lower() == transcribed_words[i].lower(): | |
word_score_list.append({"quality_score": 100, "word": word}) | |
html_output += f'<span style="color: green;">{word}</span> ' # Correct words in green | |
elif difflib.get_close_matches(word, [transcribed_words[i]]): | |
word_score_list.append({"quality_score": 80, "word": word}) # Close matches | |
html_output += f'<span style="color: yellow;">{word}</span> ' # Close matches in yellow | |
else: | |
word_score_list.append({"quality_score": 0, "word": word}) | |
html_output += f'<span style="color: red;">{word}</span> ' # Incorrect words in red | |
# Create pronunciation audio for the incorrect word | |
audio_file_path = create_pronunciation_audio(word) | |
incorrect_words_audios.append((word, audio_file_path)) | |
except IndexError: | |
# Word in reference that was not transcribed | |
word_score_list.append({"quality_score": 0, "word": word}) | |
html_output += f'<span style="color: red;">{word}</span> ' | |
# Provide audio for incorrect words | |
if incorrect_words_audios: | |
html_output += "<br><strong>Pronunciation for Incorrect Words:</strong><br>" | |
for word, audio in incorrect_words_audios: | |
suggestion = difflib.get_close_matches(word, reference_words, n=1) | |
suggestion_text = f" (Did you mean: <em>{suggestion[0]}</em>?)" if suggestion else "" | |
up_audio = upfilepath(audio) | |
audio_src = f"https://mr2along-speech-recognize.hf.space/gradio_api/file={up_audio}" | |
html_output += f'{word}: ' | |
html_output += f'<audio controls><source src="{audio_src}" type="audio/mpeg">Your browser does not support the audio tag.</audio>{suggestion_text}<br>' | |
# Return structured data | |
return [html_output, word_score_list] | |
# Step 4: Text-to-Speech Function | |
def text_to_speech(paragraph): | |
if not paragraph: | |
return None # Handle the case when no text is provided | |
tts = gTTS(paragraph) | |
audio_file_path = "audio/paragraph.mp3" # Save the audio to a file | |
tts.save(audio_file_path) | |
return audio_file_path # Return the file path | |
# Gradio Interface Function | |
def gradio_function(paragraph, audio): | |
# Transcribe the audio | |
transcribed_text = transcribe_audio(audio) | |
# Compare the original paragraph with the transcribed text | |
comparison_result = compare_texts(paragraph, transcribed_text) | |
# Return comparison result | |
return comparison_result | |
# Gradio Interface using the updated API | |
interface = gr.Interface( | |
fn=gradio_function, | |
inputs=[ | |
gr.Textbox(lines=5, label="Input Paragraph"), | |
gr.Audio(type="filepath", label="Record Audio") | |
], | |
outputs=["html"], | |
title="Speech Recognition Comparison", | |
description="Input a paragraph, record your audio, and compare the transcription to the original text." | |
) | |
# Gradio Interface for Text-to-Speech | |
tts_interface = gr.Interface( | |
fn=text_to_speech, | |
inputs=gr.Textbox(lines=5, label="Input Paragraph to Read Aloud"), | |
outputs=gr.Audio(label="Text-to-Speech Output"), | |
title="Text-to-Speech", | |
description="This tool will read your input paragraph aloud." | |
) | |
# Combine both interfaces into one | |
demo = gr.TabbedInterface([interface, tts_interface], ["Speech Recognition", "Text-to-Speech"]) | |
# Launch Gradio app | |
demo.launch() |