Ins-Vid / app.py
KingNish's picture
Update app.py
4e918fb verified
raw
history blame
6.35 kB
import gradio as gr
import torch
import os
import spaces
import uuid
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
from diffusers.utils import export_to_video
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
MORE = """ ## TRY Other Demos
### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
"""
# Constants
bases = {
"Cartoon": "frankjoshua/toonyou_beta6",
"Realistic": "emilianJR/epiCRealism",
"3d": "Lykon/DreamShaper",
"Anime": "Yntec/mistoonAnime2"
}
step_loaded = None
base_loaded = "Realistic"
motion_loaded = None
# Ensure model and scheduler are initialized in GPU-enabled function
if not torch.cuda.is_available():
raise NotImplementedError("No GPU detected!")
device = "cuda"
dtype = torch.float16
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
# Safety checkers
from transformers import CLIPFeatureExtractor
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
# Function
@spaces.GPU(duration=30,queue=False)
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
global step_loaded
global base_loaded
global motion_loaded
print(prompt, base, step)
if step_loaded != step:
repo = "ByteDance/AnimateDiff-Lightning"
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
step_loaded = step
if base_loaded != base:
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
base_loaded = base
if motion_loaded != motion:
pipe.unload_lora_weights()
if motion != "":
pipe.load_lora_weights(motion, adapter_name="motion")
pipe.set_adapters(["motion"], [0.7])
motion_loaded = motion
progress((0, step))
def progress_callback(i, t, z):
progress((i+1, step))
output = pipe(prompt=prompt, guidance_scale=1.2, num_inference_steps=step, callback=progress_callback, callback_steps=1)
name = str(uuid.uuid4()).replace("-", "")
path = f"/tmp/{name}.mp4"
export_to_video(output.frames[0], path, fps=10)
return path
# Gradio Interface
with gr.Blocks(css="style.css") as demo:
gr.HTML(
"<h1><center>Instant⚡Video</center></h1>" +
"<p><center><span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.</center></p>" +
"<p><center><strong>First Video Generating takes time then Videos generate faster.</p>" +
"<p><center>To get best results Make Sure to Write prompts in style as Given in Examples/p>" +
"<p><a href='https://huggingface.co/spaces/KingNish/Instant-Video/discussions/1' >Must Share you Best Results with Community - Click HERE<a></p>"
)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label='Prompt'
)
with gr.Row():
select_base = gr.Dropdown(
label='Base model',
choices=[
"Cartoon",
"Realistic",
"3d",
"Anime",
],
value=base_loaded,
interactive=True
)
select_motion = gr.Dropdown(
label='Motion',
choices=[
("Default", ""),
("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"),
("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"),
("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"),
("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"),
("Pan left", "guoyww/animatediff-motion-lora-pan-left"),
("Pan right", "guoyww/animatediff-motion-lora-pan-right"),
("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"),
("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"),
],
value="guoyww/animatediff-motion-lora-zoom-in",
interactive=True
)
select_step = gr.Dropdown(
label='Inference steps',
choices=[
('1-Step', 1),
('2-Step', 2),
('4-Step', 4),
('8-Step', 8),
],
value=4,
interactive=True
)
submit = gr.Button(
scale=1,
variant='primary'
)
video = gr.Video(
label='AnimateDiff-Lightning',
autoplay=True,
height=512,
width=512,
elem_id="video_output"
)
gr.on(triggers=[
submit.click,
prompt.submit
],
fn = generate_image,
inputs = [prompt, select_base, select_motion, select_step],
outputs = [video],
api_name = "instant_video",
queue = False
)
gr.Examples(
examples=[
["Focus: Eiffel Tower (Animate: Clouds moving)"], #Atmosphere Movement Example
["Focus: Trees In forest (Animate: Lion running)"], #Object Movement Example
["Focus: Astronaut in Space"], #Normal
["Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)"], #Camera distance
["Focus: Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"], #Camera Movement
["Focus: Panda in Forest (Animate: Drinking Tea)"], #Doing Something
["Focus: Kids Playing (Season: Winter)"], #Atmosphere or Season
{"Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)"} #Mixture
],
fn=generate_image,
inputs=[prompt],
outputs=[video],
cache_examples="lazy",
)
demo.queue().launch()
Translate