Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,6 @@ from huggingface_hub import hf_hub_download
|
|
10 |
from safetensors.torch import load_file
|
11 |
from PIL import Image
|
12 |
|
13 |
-
MORE = """ ## TRY Other Demos
|
14 |
-
### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
|
15 |
-
"""
|
16 |
-
|
17 |
# Constants
|
18 |
bases = {
|
19 |
"Cartoon": "frankjoshua/toonyou_beta6",
|
@@ -21,49 +17,63 @@ bases = {
|
|
21 |
"3d": "Lykon/DreamShaper",
|
22 |
"Anime": "Yntec/mistoonAnime2"
|
23 |
}
|
24 |
-
step_loaded = None
|
25 |
-
base_loaded = "Realistic"
|
26 |
-
motion_loaded = None
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
if not torch.cuda.is_available():
|
30 |
raise NotImplementedError("No GPU detected!")
|
31 |
|
32 |
device = "cuda"
|
33 |
dtype = torch.float16
|
34 |
-
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
|
35 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
|
41 |
|
42 |
# Function
|
43 |
@spaces.GPU(duration=60,queue=False)
|
44 |
-
def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Progress()):
|
45 |
-
global
|
46 |
-
global
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
if step_loaded != step:
|
51 |
-
repo = "ByteDance/AnimateDiff-Lightning"
|
52 |
-
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
53 |
-
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
54 |
-
step_loaded = step
|
55 |
|
56 |
-
if
|
57 |
-
pipe.
|
58 |
-
|
|
|
59 |
|
60 |
-
if motion_loaded != motion:
|
61 |
-
pipe.unload_lora_weights()
|
62 |
-
if motion != "":
|
63 |
-
pipe.load_lora_weights(motion, adapter_name="motion")
|
64 |
-
pipe.set_adapters(["motion"], [0.7])
|
65 |
-
motion_loaded = motion
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
output = pipe(prompt=f"{base} image of {prompt}", guidance_scale=1.2, num_inference_steps=step)
|
68 |
|
69 |
name = str(uuid.uuid4()).replace("-", "")
|
@@ -72,6 +82,7 @@ def generate_image(prompt, base="Realistic", motion="", step=8, progress=gr.Prog
|
|
72 |
return path
|
73 |
|
74 |
|
|
|
75 |
# Gradio Interface
|
76 |
with gr.Blocks(css="style.css") as demo:
|
77 |
gr.HTML(
|
@@ -162,7 +173,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
162 |
fn=generate_image,
|
163 |
inputs=[prompt],
|
164 |
outputs=[video],
|
165 |
-
cache_examples=
|
166 |
)
|
167 |
|
168 |
demo.queue().launch()
|
|
|
10 |
from safetensors.torch import load_file
|
11 |
from PIL import Image
|
12 |
|
|
|
|
|
|
|
|
|
13 |
# Constants
|
14 |
bases = {
|
15 |
"Cartoon": "frankjoshua/toonyou_beta6",
|
|
|
17 |
"3d": "Lykon/DreamShaper",
|
18 |
"Anime": "Yntec/mistoonAnime2"
|
19 |
}
|
|
|
|
|
|
|
20 |
|
21 |
+
motion_models = {
|
22 |
+
"Default": None,
|
23 |
+
"Zoom in": "guoyww/animatediff-motion-lora-zoom-in",
|
24 |
+
"Zoom out": "guoyww/animatediff-motion-lora-zoom-out",
|
25 |
+
"Tilt up": "guoyww/animatediff-motion-lora-tilt-up",
|
26 |
+
"Tilt down": "guoyww/animatediff-motion-lora-tilt-down",
|
27 |
+
"Pan left": "guoyww/animatediff-motion-lora-pan-left",
|
28 |
+
"Pan right": "guoyww/animatediff-motion-lora-pan-right",
|
29 |
+
"Roll left": "guoyww/animatediff-motion-lora-rolling-anticlockwise",
|
30 |
+
"Roll right": "guoyww/animatediff-motion-lora-rolling-clockwise",
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
# Preload models
|
35 |
if not torch.cuda.is_available():
|
36 |
raise NotImplementedError("No GPU detected!")
|
37 |
|
38 |
device = "cuda"
|
39 |
dtype = torch.float16
|
|
|
|
|
40 |
|
41 |
+
pipes = {}
|
42 |
+
for base_name, base_path in bases.items():
|
43 |
+
pipe = AnimateDiffPipeline.from_pretrained(base_path, torch_dtype=dtype).to(device)
|
44 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
45 |
+
pipes[base_name] = pipe
|
46 |
+
|
47 |
+
# Load motion models
|
48 |
+
for motion_name, motion_path in motion_models.items():
|
49 |
+
if motion_path:
|
50 |
+
motion_model = MotionAdapter.from_pretrained(motion_path, torch_dtype=dtype).to(device)
|
51 |
+
motion_models[motion_name] = motion_model
|
52 |
|
|
|
53 |
|
54 |
# Function
|
55 |
@spaces.GPU(duration=60,queue=False)
|
56 |
+
def generate_image(prompt, base="Realistic", motion="Default", step=8, progress=gr.Progress()):
|
57 |
+
global pipes
|
58 |
+
global motion_models
|
59 |
+
|
60 |
+
pipe = pipes[base]
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
if motion != "Default":
|
63 |
+
pipe.motion_adapter = motion_models[motion]
|
64 |
+
else:
|
65 |
+
pipe.motion_adapter = None
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# Load step model if not already loaded
|
69 |
+
repo = "ByteDance/AnimateDiff-Lightning"
|
70 |
+
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
71 |
+
try:
|
72 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt, local_files_only=True), device=device), strict=False)
|
73 |
+
except:
|
74 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
75 |
+
|
76 |
+
# Generate image
|
77 |
output = pipe(prompt=f"{base} image of {prompt}", guidance_scale=1.2, num_inference_steps=step)
|
78 |
|
79 |
name = str(uuid.uuid4()).replace("-", "")
|
|
|
82 |
return path
|
83 |
|
84 |
|
85 |
+
|
86 |
# Gradio Interface
|
87 |
with gr.Blocks(css="style.css") as demo:
|
88 |
gr.HTML(
|
|
|
173 |
fn=generate_image,
|
174 |
inputs=[prompt],
|
175 |
outputs=[video],
|
176 |
+
cache_examples="lazy",
|
177 |
)
|
178 |
|
179 |
demo.queue().launch()
|