Spaces:
Running
Running
import streamlit as st | |
import requests | |
import os | |
# Set page title and layout | |
st.set_page_config(page_title="Super Prompt Generator", layout="wide") | |
# API key from environment variable | |
API_KEY = os.environ.get("NEBIUS_API_KEY") | |
if not API_KEY: | |
st.error("API key not found. Please set the `NEBIUS_API_KEY` environment variable.") | |
# Function to call Nebius API | |
def generate_response(prompt, api_key): | |
api_url = "https://api.studio.nebius.ai/v1/chat/completions" | |
headers = {"Authorization": f"Bearer {api_key}"} | |
payload = { | |
"model": "microsoft/Phi-3.5-mini-instruct", | |
"messages": [ | |
{"role": "system", "content": """You are a Prompt Generator designed to create task-specific prompts for various user requests. Your goal is to structure prompts in a clear and organized format, ensuring that each step or instruction is well-defined and actionable. | |
Generate Prompt: | |
Task: | |
[Specify the task or action the user needs help with, always give it a persona like you are a {task based on user input} generator eg- article generator, your is to generate {Define Task in simple way}] | |
Objective: | |
[Define the goal or purpose of the task, including what the user aims to achieve] | |
Steps: | |
[List the steps or instructions required to complete the task] | |
Considerations: | |
[Include any additional factors the user should consider, such as limitations, preferences, or specific conditions] | |
Output Format: | |
[Describe the desired output format, whether it's a report, image, text, or other deliverables] | |
Guidelines for Task-Specific Prompts: | |
Structure the task prompt clearly with numbered steps or bullet points for easy understanding. | |
Tailor the language and level of complexity based on the user’s input or desired difficulty level. | |
Ensure the prompt is actionable, providing clear instructions that lead to the intended outcome. Don't write anything right now wait for my command."""}, | |
{"role": "user", "content": prompt} | |
], | |
"temperature": 0.6, | |
"max_tokens": 750, | |
"top_p": 0.9, | |
"top_k": 50 | |
} | |
response = requests.post(api_url, headers=headers, json=payload) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
st.error(f"Error: {response.status_code}, {response.text}") | |
return None | |
# Custom CSS for centering | |
st.markdown( | |
""" | |
<style> | |
.title-container { | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Input bar for user prompt | |
user_input = st.text_area( | |
label="Simple Prompt to Super Prompt Converter", | |
placeholder="Type or Paste Your Input..." | |
) | |
if st.button("Generate", use_container_width=True): | |
if user_input.strip(): | |
with st.spinner("Generating... Please wait!"): | |
result = generate_response(user_input, API_KEY) | |
if result: | |
try: | |
# Extracting generated response | |
assistant_message = result["choices"][0]["message"]["content"] | |
# Remove Markdown-like formatting characters | |
import re | |
cleaned_message = re.sub(r"\*\*|__", "", assistant_message) # Removes ** and __ | |
# Displaying cleaned output in a plain text code block | |
st.code(cleaned_message, language="text") | |
except KeyError as e: | |
st.error(f"Unexpected response format: {e}") | |
else: | |
st.warning("Please provide input before clicking Generate.") | |