mrchuy commited on
Commit
8624101
β€’
1 Parent(s): 6cf512b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -59
app.py CHANGED
@@ -5,7 +5,8 @@ from typing import List, Tuple
5
  import aiohttp
6
  import panel as pn
7
  from PIL import Image
8
- from transformers import CLIPModel, CLIPProcessor
 
9
 
10
  pn.extension(design="bootstrap", sizing_mode="stretch_width")
11
 
@@ -18,81 +19,55 @@ ICON_URLS = {
18
  }
19
 
20
 
21
- async def random_url(_):
22
- pet = random.choice(["cat", "dog"])
23
- api_url = f"https://api.the{pet}api.com/v1/images/search"
24
- async with aiohttp.ClientSession() as session:
25
- async with session.get(api_url) as resp:
26
- return (await resp.json())[0]["url"]
27
 
 
 
 
 
28
 
29
- @pn.cache
30
- def load_processor_model(
31
- processor_name: str, model_name: str
32
- ) -> Tuple[CLIPProcessor, CLIPModel]:
33
- processor = CLIPProcessor.from_pretrained(processor_name)
34
- model = CLIPModel.from_pretrained(model_name)
35
- return processor, model
36
 
37
 
38
- async def open_image_url(image_url: str) -> Image:
39
- async with aiohttp.ClientSession() as session:
40
- async with session.get(image_url) as resp:
41
- return Image.open(io.BytesIO(await resp.read()))
42
-
43
-
44
- def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
45
- processor, model = load_processor_model(
46
- "openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
47
- )
48
- inputs = processor(
49
- text=class_items,
50
- images=[image],
51
- return_tensors="pt", # pytorch tensors
52
- )
53
- outputs = model(**inputs)
54
- logits_per_image = outputs.logits_per_image
55
- class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
56
- return class_likelihoods[0]
57
-
58
-
59
- async def process_inputs(class_names: List[str], image_url: str):
60
  """
61
  High level function that takes in the user inputs and returns the
62
  classification results as panel objects.
63
  """
64
  try:
65
  main.disabled = True
66
- if not image_url:
67
- yield "##### ⚠️ Provide an image URL"
68
  return
69
 
70
- yield "##### βš™ Fetching image and running model..."
71
  try:
72
- pil_img = await open_image_url(image_url)
73
- img = pn.pane.Image(pil_img, height=400, align="center")
 
 
 
74
  except Exception as e:
75
  yield f"##### πŸ˜” Something went wrong, please try a different URL!"
76
  return
77
 
78
- class_items = class_names.split(",")
79
- class_likelihoods = get_similarity_scores(class_items, pil_img)
80
 
81
  # build the results column
82
- results = pn.Column("##### πŸŽ‰ Here are the results!", img)
83
-
84
- for class_item, class_likelihood in zip(class_items, class_likelihoods):
85
- row_label = pn.widgets.StaticText(
86
- name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
87
- )
88
- row_bar = pn.indicators.Progress(
89
- value=int(class_likelihood * 100),
90
- sizing_mode="stretch_width",
91
- bar_color="secondary",
92
- margin=(0, 10),
93
- design=pn.theme.Material,
94
- )
95
- results.append(pn.Column(row_label, row_bar))
 
96
  yield results
97
  finally:
98
  main.disabled = False
@@ -112,7 +87,7 @@ class_names = pn.widgets.TextInput(
112
  )
113
 
114
  input_widgets = pn.Column(
115
- "##### 😊 Click randomize or paste a URL to start classifying!",
116
  pn.Row(image_url, randomize_url),
117
  class_names,
118
  )
@@ -138,7 +113,7 @@ main = pn.WidgetBox(
138
  footer_row,
139
  )
140
 
141
- title = "Panel Demo - Image Classification"
142
  pn.template.BootstrapTemplate(
143
  title=title,
144
  main=main,
 
5
  import aiohttp
6
  import panel as pn
7
  from PIL import Image
8
+ # from transformers import CLIPModel, CLIPProcessor
9
+ from transformers import AutoTokenizer, AutoModelForCausalLM
10
 
11
  pn.extension(design="bootstrap", sizing_mode="stretch_width")
12
 
 
19
  }
20
 
21
 
 
 
 
 
 
 
22
 
23
+ def load_tokenizer_model():
24
+ tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
25
+ model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-base", torch_dtype=torch.bfloat16)
26
+ return tokenizer,model
27
 
 
 
 
 
 
 
 
28
 
29
 
30
+ async def process_inputs(class_names: List[str], user_text: str):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  """
32
  High level function that takes in the user inputs and returns the
33
  classification results as panel objects.
34
  """
35
  try:
36
  main.disabled = True
37
+ if not user_text:
38
+ yield "##### ⚠️ Provide some user text URL"
39
  return
40
 
41
+ yield "##### βš™ Fetching and running model..."
42
  try:
43
+ inputs = tokenizer("The world is", return_tensors="pt")
44
+ sample = model.generate(**inputs, max_length=128)
45
+
46
+ # pil_img = await open_image_url(image_url)
47
+ # img = pn.pane.Image(pil_img, height=400, align="center")
48
  except Exception as e:
49
  yield f"##### πŸ˜” Something went wrong, please try a different URL!"
50
  return
51
 
52
+ # class_items = class_names.split(",")
53
+ # class_likelihoods = get_similarity_scores(class_items, pil_img)
54
 
55
  # build the results column
56
+
57
+ results = pn.Column("##### πŸŽ‰ Here are the results!", tokenizer.decode(sample[0])))
58
+
59
+ # for class_item, class_likelihood in zip(class_items, class_likelihoods):
60
+ # row_label = pn.widgets.StaticText(
61
+ # name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
62
+ # )
63
+ # row_bar = pn.indicators.Progress(
64
+ # value=int(class_likelihood * 100),
65
+ # sizing_mode="stretch_width",
66
+ # bar_color="secondary",
67
+ # margin=(0, 10),
68
+ # design=pn.theme.Material,
69
+ # )
70
+ # results.append(pn.Column(row_label, row_bar))
71
  yield results
72
  finally:
73
  main.disabled = False
 
87
  )
88
 
89
  input_widgets = pn.Column(
90
+ "##### Add some text and do something",
91
  pn.Row(image_url, randomize_url),
92
  class_names,
93
  )
 
113
  footer_row,
114
  )
115
 
116
+ title = "Xgen input panel"
117
  pn.template.BootstrapTemplate(
118
  title=title,
119
  main=main,