Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,8 @@ from typing import List, Tuple
|
|
5 |
import aiohttp
|
6 |
import panel as pn
|
7 |
from PIL import Image
|
8 |
-
from transformers import CLIPModel, CLIPProcessor
|
|
|
9 |
|
10 |
pn.extension(design="bootstrap", sizing_mode="stretch_width")
|
11 |
|
@@ -18,81 +19,55 @@ ICON_URLS = {
|
|
18 |
}
|
19 |
|
20 |
|
21 |
-
async def random_url(_):
|
22 |
-
pet = random.choice(["cat", "dog"])
|
23 |
-
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
24 |
-
async with aiohttp.ClientSession() as session:
|
25 |
-
async with session.get(api_url) as resp:
|
26 |
-
return (await resp.json())[0]["url"]
|
27 |
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
@pn.cache
|
30 |
-
def load_processor_model(
|
31 |
-
processor_name: str, model_name: str
|
32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
34 |
-
model = CLIPModel.from_pretrained(model_name)
|
35 |
-
return processor, model
|
36 |
|
37 |
|
38 |
-
async def
|
39 |
-
async with aiohttp.ClientSession() as session:
|
40 |
-
async with session.get(image_url) as resp:
|
41 |
-
return Image.open(io.BytesIO(await resp.read()))
|
42 |
-
|
43 |
-
|
44 |
-
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
|
45 |
-
processor, model = load_processor_model(
|
46 |
-
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
|
47 |
-
)
|
48 |
-
inputs = processor(
|
49 |
-
text=class_items,
|
50 |
-
images=[image],
|
51 |
-
return_tensors="pt", # pytorch tensors
|
52 |
-
)
|
53 |
-
outputs = model(**inputs)
|
54 |
-
logits_per_image = outputs.logits_per_image
|
55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
56 |
-
return class_likelihoods[0]
|
57 |
-
|
58 |
-
|
59 |
-
async def process_inputs(class_names: List[str], image_url: str):
|
60 |
"""
|
61 |
High level function that takes in the user inputs and returns the
|
62 |
classification results as panel objects.
|
63 |
"""
|
64 |
try:
|
65 |
main.disabled = True
|
66 |
-
if not
|
67 |
-
yield "##### β οΈ Provide
|
68 |
return
|
69 |
|
70 |
-
yield "##### β Fetching
|
71 |
try:
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
except Exception as e:
|
75 |
yield f"##### π Something went wrong, please try a different URL!"
|
76 |
return
|
77 |
|
78 |
-
class_items = class_names.split(",")
|
79 |
-
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
80 |
|
81 |
# build the results column
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
96 |
yield results
|
97 |
finally:
|
98 |
main.disabled = False
|
@@ -112,7 +87,7 @@ class_names = pn.widgets.TextInput(
|
|
112 |
)
|
113 |
|
114 |
input_widgets = pn.Column(
|
115 |
-
"#####
|
116 |
pn.Row(image_url, randomize_url),
|
117 |
class_names,
|
118 |
)
|
@@ -138,7 +113,7 @@ main = pn.WidgetBox(
|
|
138 |
footer_row,
|
139 |
)
|
140 |
|
141 |
-
title = "
|
142 |
pn.template.BootstrapTemplate(
|
143 |
title=title,
|
144 |
main=main,
|
|
|
5 |
import aiohttp
|
6 |
import panel as pn
|
7 |
from PIL import Image
|
8 |
+
# from transformers import CLIPModel, CLIPProcessor
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
|
11 |
pn.extension(design="bootstrap", sizing_mode="stretch_width")
|
12 |
|
|
|
19 |
}
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
def load_tokenizer_model():
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-base", trust_remote_code=True)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-base", torch_dtype=torch.bfloat16)
|
26 |
+
return tokenizer,model
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
+
async def process_inputs(class_names: List[str], user_text: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"""
|
32 |
High level function that takes in the user inputs and returns the
|
33 |
classification results as panel objects.
|
34 |
"""
|
35 |
try:
|
36 |
main.disabled = True
|
37 |
+
if not user_text:
|
38 |
+
yield "##### β οΈ Provide some user text URL"
|
39 |
return
|
40 |
|
41 |
+
yield "##### β Fetching and running model..."
|
42 |
try:
|
43 |
+
inputs = tokenizer("The world is", return_tensors="pt")
|
44 |
+
sample = model.generate(**inputs, max_length=128)
|
45 |
+
|
46 |
+
# pil_img = await open_image_url(image_url)
|
47 |
+
# img = pn.pane.Image(pil_img, height=400, align="center")
|
48 |
except Exception as e:
|
49 |
yield f"##### π Something went wrong, please try a different URL!"
|
50 |
return
|
51 |
|
52 |
+
# class_items = class_names.split(",")
|
53 |
+
# class_likelihoods = get_similarity_scores(class_items, pil_img)
|
54 |
|
55 |
# build the results column
|
56 |
+
|
57 |
+
results = pn.Column("##### π Here are the results!", tokenizer.decode(sample[0])))
|
58 |
+
|
59 |
+
# for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
60 |
+
# row_label = pn.widgets.StaticText(
|
61 |
+
# name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
62 |
+
# )
|
63 |
+
# row_bar = pn.indicators.Progress(
|
64 |
+
# value=int(class_likelihood * 100),
|
65 |
+
# sizing_mode="stretch_width",
|
66 |
+
# bar_color="secondary",
|
67 |
+
# margin=(0, 10),
|
68 |
+
# design=pn.theme.Material,
|
69 |
+
# )
|
70 |
+
# results.append(pn.Column(row_label, row_bar))
|
71 |
yield results
|
72 |
finally:
|
73 |
main.disabled = False
|
|
|
87 |
)
|
88 |
|
89 |
input_widgets = pn.Column(
|
90 |
+
"##### Add some text and do something",
|
91 |
pn.Row(image_url, randomize_url),
|
92 |
class_names,
|
93 |
)
|
|
|
113 |
footer_row,
|
114 |
)
|
115 |
|
116 |
+
title = "Xgen input panel"
|
117 |
pn.template.BootstrapTemplate(
|
118 |
title=title,
|
119 |
main=main,
|