Spaces:
Running
Running
File size: 7,986 Bytes
8e34ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from pathlib import Path
from time import sleep
from tqdm import tqdm
import argparse
import requests
import git
import merge
import os
import shutil
import sys
import yaml
from huggingface_hub import snapshot_download
from huggingface_hub import HfApi, hf_hub_download
def parse_arguments():
parser = argparse.ArgumentParser(description="Merge HuggingFace models")
parser.add_argument('repo_list', type=str, help='File containing list of repositories to merge, supports mergekit yaml or txt')
parser.add_argument('output_dir', type=str, help='Directory for the merged models')
parser.add_argument('-staging', type=str, default='./staging', help='Path to staging folder')
parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
parser.add_argument('--dry', action='store_true', help='Run in dry mode without making any changes')
return parser.parse_args()
def repo_list_generator(file_path, default_p, default_lambda_val):
_, file_extension = os.path.splitext(file_path)
# Branching based on file extension
if file_extension.lower() == '.yaml' or file_extension.lower() == ".yml":
with open(file_path, 'r') as file:
data = yaml.safe_load(file)
for model_info in data['models']:
model_name = model_info['model']
p = model_info.get('parameters', {}).get('weight', default_p)
lambda_val = 1 / model_info.get('parameters', {}).get('density', default_lambda_val)
yield model_name, p, lambda_val
else: # Defaulting to txt file processing
with open(file_path, "r") as file:
repos_to_process = file.readlines()
for repo in repos_to_process:
yield repo.strip(), default_p, default_lambda_val
def reset_directories(directories, dry_run):
for directory in directories:
if os.path.exists(directory):
if dry_run:
print(f"[DRY RUN] Would delete directory {directory}")
else:
# Check if the directory is a symlink
if os.path.islink(directory):
os.unlink(directory) # Remove the symlink
else:
shutil.rmtree(directory, ignore_errors=False)
print(f"Directory {directory} deleted successfully.")
def do_merge(tensor_map, staging_path, p, lambda_val, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would merge with {staging_path}")
else:
try:
print(f"Merge operation for {staging_path}")
tensor_map = merge.merge_folder(tensor_map, staging_path, p, lambda_val)
print("Merge operation completed successfully.")
except Exception as e:
print(f"Error during merge operation: {e}")
return tensor_map
def download_repo(repo_name, path, dry_run=False):
if not os.path.exists(path):
os.makedirs(path)
api = HfApi()
# Get the list of all files in the repository using HfApi
repo_files = api.list_repo_files(repo_name)
if dry_run:
print(f"[DRY RUN] Would download the following files from {repo_name} to {path}:")
for file_path in repo_files:
print(file_path)
else:
print(f"Downloading the entire repository {repo_name} directly to {path}.")
for file_path in repo_files:
print(f"Downloading {path}/{file_path}...")
# Download each file directly to the specified path
hf_hub_download(
repo_id=repo_name,
filename=file_path,
cache_dir=path,
local_dir=path, # Store directly in the target directory
local_dir_use_symlinks=False # Ensure symlinks are not used
)
print(f"Repository {repo_name} downloaded successfully to {path}.")
def should_create_symlink(repo_name):
if os.path.exists(repo_name):
return True, os.path.isfile(repo_name)
return False, False
def download_or_link_repo(repo_name, path, dry_run=False):
symlink, is_file = should_create_symlink(repo_name)
if symlink and is_file:
os.makedirs(path, exist_ok=True)
symlink_path = os.path.join(path, os.path.basename(repo_name))
os.symlink(repo_name, symlink_path)
elif symlink:
os.symlink(repo_name, path)
else:
download_repo(repo_name, path, dry_run)
def delete_repo(path, dry_run=False):
if dry_run:
print(f"[DRY RUN] Would delete repository at {path}")
else:
try:
shutil.rmtree(path)
print(f"Repository at {path} deleted successfully.")
except Exception as e:
print(f"Error deleting repository at {path}: {e}")
def get_max_vocab_size(repo_list):
max_vocab_size = 0
repo_with_max_vocab = None
for repo in repo_list:
repo_name = repo[0].strip()
url = f"https://huggingface.co/{repo_name}/raw/main/config.json"
try:
response = requests.get(url)
response.raise_for_status()
config = response.json()
vocab_size = config.get("vocab_size", 0)
if vocab_size > max_vocab_size:
max_vocab_size = vocab_size
repo_with_max_vocab = repo_name
except requests.RequestException as e:
print(f"Error fetching data from {url}: {e}")
return max_vocab_size, repo_with_max_vocab
def download_json_files(repo_name, file_paths, output_dir):
base_url = f"https://huggingface.co/{repo_name}/raw/main/"
for file_path in file_paths:
url = base_url + file_path
response = requests.get(url)
if response.status_code == 200:
with open(os.path.join(output_dir, os.path.basename(file_path)), 'wb') as file:
file.write(response.content)
else:
print(f"Failed to download {file_path}")
def process_repos(output_dir, base_model, staging_model, repo_list_file, p, lambda_val, dry_run=False):
# Check if output_dir exists
if os.path.exists(output_dir):
sys.exit(f"Output directory '{output_dir}' already exists. Exiting to prevent data loss.")
# Reset base and staging directories
reset_directories([base_model, staging_model], dry_run)
repo_list_gen = repo_list_generator(repo_list_file, p, lambda_val)
repos_to_process = list(repo_list_gen)
# Initial download for 'base_model'
download_or_link_repo(repos_to_process[0][0].strip(), base_model, dry_run)
tensor_map = merge.map_tensors_to_files(base_model)
for i, repo in enumerate(tqdm(repos_to_process[1:], desc='Merging Repos')):
repo_name = repo[0].strip()
repo_p = repo[1]
repo_lambda = repo[2]
delete_repo(staging_model, dry_run)
download_or_link_repo(repo_name, staging_model, dry_run)
tensor_map = do_merge(tensor_map, staging_model, repo_p, repo_lambda, dry_run)
os.makedirs(output_dir, exist_ok=True)
merge.copy_nontensor_files(base_model, output_dir)
# Handle LLMs that add tokens by taking the largest
if os.path.exists(os.path.join(output_dir, 'config.json')):
max_vocab_size, repo_name = get_max_vocab_size(repos_to_process)
if max_vocab_size > 0:
file_paths = ['config.json', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json']
download_json_files(repo_name, file_paths, output_dir)
reset_directories([base_model, staging_model], dry_run)
merge.save_tensor_map(tensor_map, output_dir)
if __name__ == "__main__":
args = parse_arguments()
staging_path = Path(args.staging)
os.makedirs(args.staging, exist_ok=True)
process_repos(args.output_dir, staging_path / 'base_model', staging_path / 'staging_model', args.repo_list, args.p, args.lambda_val, args.dry)
|