File size: 9,126 Bytes
6b7b2db
 
 
 
 
 
 
11b8aac
6b7b2db
11b8aac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b7b2db
b7b912a
6b7b2db
 
 
 
11b8aac
 
 
 
 
 
 
 
 
6b7b2db
11b8aac
 
 
 
b7b912a
6b7b2db
 
 
 
 
 
b7b912a
 
6b7b2db
b7b912a
11b8aac
6b7b2db
 
 
11b8aac
 
 
 
 
6b7b2db
 
11b8aac
6b7b2db
 
11b8aac
 
 
 
 
 
 
 
 
 
 
6b7b2db
 
 
 
 
 
 
 
 
11b8aac
 
 
 
 
 
 
 
 
 
 
6b7b2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b8aac
 
 
 
 
 
 
 
 
 
 
 
 
6b7b2db
 
b7b912a
6b7b2db
 
 
 
 
 
11b8aac
6b7b2db
 
8c7ccf7
6b7b2db
 
 
 
 
b7b912a
 
11b8aac
6b7b2db
b7b912a
 
6b7b2db
b7b912a
6b7b2db
 
11b8aac
 
 
 
 
 
6b7b2db
11b8aac
 
 
 
6b7b2db
 
 
 
 
 
11b8aac
6b7b2db
 
11b8aac
 
 
 
 
 
 
 
6b7b2db
 
 
11b8aac
 
 
 
 
 
6b7b2db
11b8aac
 
 
 
6b7b2db
 
 
 
 
 
 
 
 
 
 
11b8aac
 
6b7b2db
 
 
11b8aac
 
 
6b7b2db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b912a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import numpy as np
import os
import shutil
import torch
import torch.nn.functional as F
from safetensors.torch import safe_open, save_file
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)

def merge_tensors(tensor1: torch.Tensor, tensor2: torch.Tensor, p: float) -> torch.Tensor:
    """
    Merge two tensors using dropout and scaling.

    Args:
        tensor1 (torch.Tensor): The first tensor.
        tensor2 (torch.Tensor): The second tensor.
        p (float): Dropout probability.

    Returns:
        torch.Tensor: The merged tensor.
    """
    delta = tensor2 - tensor1
    m = torch.from_numpy(np.random.binomial(1, p, delta.shape)).to(tensor1.device)
    delta_tilde = m * delta
    delta_hat = delta_tilde / (1 - p)
    return delta_hat

def merge_safetensors(file_path1: str, file_path2: str, p: float, lambda_val: float) -> dict:
    """
    Merge two safetensors files.

    Args:
        file_path1 (str): Path to the first safetensors file.
        file_path2 (str): Path to the second safetensors file.
        p (float): Dropout probability.
        lambda_val (float): Scaling factor.

    Returns:
        dict: A dictionary of merged tensors.
    """
    merged_tensors = {}
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    with safe_open(file_path1, framework="pt", device="cpu") as f1, safe_open(file_path2, framework="pt", device="cpu") as f2:
        keys1 = set(f1.keys())
        keys2 = set(f2.keys())
        common_keys = keys1.intersection(keys2)

        for key in common_keys:
            tensor1 = f1.get_tensor(key).to(device)
            tensor2 = f2.get_tensor(key).to(device)
            tensor1, tensor2 = resize_tensors(tensor1, tensor2)
            merged_tensors[key] = (tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)).cpu()
            logging.info(f"Merging {key}")

    return merged_tensors

class BinDataHandler:
    """
    A handler for binary data files.
    """
    def __init__(self, data: dict):
        self.data = data

    def get_tensor(self, key: str) -> torch.Tensor:
        return self.data[key]

def read_tensors(file_path: str, ext: str) -> tuple:
    """
    Read tensors from a file.

    Args:
        file_path (str): Path to the file.
        ext (str): File extension.

    Returns:
        tuple: A tuple containing the file handler and the set of keys.
    """
    if ext == ".safetensors" and file_path.endswith(".safetensors"):
        f = safe_open(file_path, framework="pt", device="cpu")
        return f, set(f.keys())
    if ext == ".bin" and file_path.endswith(".bin"):
        data = torch.load(file_path, map_location=torch.device('cpu'))
        f = BinDataHandler(data)
        return f, set(data.keys())
    return None, None

def resize_tensors(tensor1: torch.Tensor, tensor2: torch.Tensor) -> tuple:
    """
    Resize tensors to ensure they have the same shape.

    Args:
        tensor1 (torch.Tensor): The first tensor.
        tensor2 (torch.Tensor): The second tensor.

    Returns:
        tuple: A tuple containing the resized tensors.
    """
    if len(tensor1.shape) not in [1, 2]:
        return tensor1, tensor2

    if tensor1.shape[-1] < tensor2.shape[-1]:
        padding_size = tensor2.shape[-1] - tensor1.shape[-1]
        tensor1 = F.pad(tensor1, (0, padding_size, 0, 0))
    elif tensor2.shape[-1] < tensor1.shape[-1]:
        padding_size = tensor1.shape[-1] - tensor2.shape[-1]
        tensor2 = F.pad(tensor2, (0, padding_size, 0, 0))

    if tensor1.shape[0] < tensor2.shape[0]:
        padding_size = tensor2.shape[0] - tensor1.shape[0]
        tensor1 = F.pad(tensor1, (0, 0, 0, padding_size))
    elif tensor2.shape[0] < tensor1.shape[0]:
        padding_size = tensor1.shape[0] - tensor2.shape[0]
        tensor2 = F.pad(tensor2, (0, 0, 0, padding_size))

    return tensor1, tensor2

def merge_folder(tensor_map: dict, directory_path: str, p: float, lambda_val: float) -> dict:
    """
    Merge tensors from a directory of model files.

    Args:
        tensor_map (dict): A dictionary mapping tensor keys to their file paths.
        directory_path (str): Path to the directory containing model files.
        p (float): Dropout probability.
        lambda_val (float): Scaling factor.

    Returns:
        dict: A dictionary of merged tensors.
    """
    keys1 = set(tensor_map.keys())
    ext = None
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    for filename in os.listdir(directory_path):
        if filename.endswith(".safetensors"):
            ext = ".safetensors"
        if filename.endswith(".bin") and ext is None:
            ext = ".bin"
    if ext is None:
        raise FileNotFoundError("Could not find model files")

    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)
        f, keys2 = read_tensors(file_path, ext)
        if keys2:
            common_keys = keys1.intersection(keys2)
            for key in common_keys:
                if "block_sparse_moe.gate" in key:
                    tensor1 = tensor_map[key]['tensor'].to(device)
                    tensor2 = f.get_tensor(key).to(device)
                    tensor_map[key]['tensor'] = (tensor1 + tensor2) / 2.0
                    continue
                tensor1 = tensor_map[key]['tensor'].to(device)
                tensor2 = f.get_tensor(key).to(device)
                tensor1, tensor2 = resize_tensors(tensor1, tensor2)
                tensor_map[key]['tensor'] = (tensor1 + lambda_val * merge_tensors(tensor1, tensor2, p)).cpu()
    return tensor_map

def map_tensors_to_files(directory_path: str) -> dict:
    """
    Map tensors to their respective files in a directory.

    Args:
        directory_path (str): Path to the directory containing model files.

    Returns:
        dict: A dictionary mapping tensor keys to their file paths.
    """
    tensor_map = {}
    for filename in os.listdir(directory_path):
        file_path = os.path.join(directory_path, filename)
        f, keys = read_tensors(file_path, '.safetensors')
        if keys:
            for key in keys:
                tensor = f.get_tensor(key)
                tensor_map[key] = {'filename': filename, 'shape': tensor.shape, 'tensor': tensor}
    return tensor_map

def copy_nontensor_files(from_path: str, to_path: str):
    """
    Copy non-tensor files from one directory to another.

    Args:
        from_path (str): Path to the source directory.
        to_path (str): Path to the destination directory.
    """
    for filename in os.listdir(from_path):
        file_path = os.path.join(from_path, filename)
        if from_path != to_path and not filename.startswith(".") and not filename.startswith("README") and not filename.endswith(".bin") and not filename.endswith(".safetensors") and not filename.endswith(".pt") and not os.path.isdir(file_path):
            logging.info(f"Copying {file_path} to {to_path}")
            shutil.copyfile(file_path, to_path + '/' + filename)

def save_tensor_map(tensor_map: dict, output_folder: str):
    """
    Save the merged tensor map to the output directory.

    Args:
        tensor_map (dict): A dictionary of merged tensors.
        output_folder (str): Path to the output directory.
    """
    metadata = {'format': 'pt'}
    by_filename = {}

    for key, value in tensor_map.items():
        filename = value["filename"]
        tensor = value["tensor"]
        if filename not in by_filename:
            by_filename[filename] = {}
        by_filename[filename][key] = tensor

    for filename in sorted(by_filename.keys()):
        output_file = output_folder + '/' + filename
        logging.info(f"Saving: {output_file}")
        save_file(by_filename[filename], output_file, metadata=metadata)

def main():
    """
    Main function to parse command-line arguments and orchestrate the merging process.
    """
    parser = argparse.ArgumentParser(description='Merge two safetensor model files.')
    parser.add_argument('base_model', type=str, help='The base model safetensor file')
    parser.add_argument('second_model', type=str, help='The second model safetensor file')
    parser.add_argument('output_model', type=str, help='The output merged model safetensor file')
    parser.add_argument('-p', type=float, default=0.5, help='Dropout probability')
    parser.add_argument('-lambda', dest='lambda_val', type=float, default=1.0, help='Scaling factor for the weight delta')
    args = parser.parse_args()

    if os.path.isdir(args.base_model):
        if not os.path.exists(args.output_model):
            os.makedirs(args.output_model)

        tensor_map = map_tensors_to_files(args.base_model)
        tensor_map = merge_folder(tensor_map, args.second_model, args.p, args.lambda_val)
        copy_nontensor_files(args.base_model, args.output_model)
        save_tensor_map(tensor_map, args.output_model)
    else:
        merged = merge_safetensors(args.base_model, args.second_model, args.p, args.lambda_val)
        save_file(merged, args.output_model)

if __name__ == '__main__':
    main()