Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import os | |
import random | |
import string | |
from pathlib import Path | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from tqdm import tqdm | |
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL | |
from f5_tts.model.modules import MelSpec | |
from f5_tts.model.utils import convert_char_to_pinyin | |
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav | |
def get_seedtts_testset_metainfo(metalst): | |
f = open(metalst) | |
lines = f.readlines() | |
f.close() | |
metainfo = [] | |
for line in lines: | |
if len(line.strip().split("|")) == 5: | |
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|") | |
elif len(line.strip().split("|")) == 4: | |
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|") | |
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav") | |
if not os.path.isabs(prompt_wav): | |
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) | |
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav)) | |
return metainfo | |
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav | |
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path): | |
f = open(metalst) | |
lines = f.readlines() | |
f.close() | |
metainfo = [] | |
for line in lines: | |
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t") | |
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc) | |
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-") | |
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac") | |
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc) | |
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-") | |
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac") | |
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav)) | |
return metainfo | |
# padded to max length mel batch | |
def padded_mel_batch(ref_mels): | |
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax() | |
padded_ref_mels = [] | |
for mel in ref_mels: | |
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0) | |
padded_ref_mels.append(padded_ref_mel) | |
padded_ref_mels = torch.stack(padded_ref_mels) | |
padded_ref_mels = padded_ref_mels.permute(0, 2, 1) | |
return padded_ref_mels | |
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav | |
def get_inference_prompt( | |
metainfo, | |
speed=1.0, | |
tokenizer="pinyin", | |
polyphone=True, | |
target_sample_rate=24000, | |
n_fft=1024, | |
win_length=1024, | |
n_mel_channels=100, | |
hop_length=256, | |
mel_spec_type="vocos", | |
target_rms=0.1, | |
use_truth_duration=False, | |
infer_batch_size=1, | |
num_buckets=200, | |
min_secs=3, | |
max_secs=40, | |
): | |
prompts_all = [] | |
min_tokens = min_secs * target_sample_rate // hop_length | |
max_tokens = max_secs * target_sample_rate // hop_length | |
batch_accum = [0] * num_buckets | |
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = ( | |
[[] for _ in range(num_buckets)] for _ in range(6) | |
) | |
mel_spectrogram = MelSpec( | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
n_mel_channels=n_mel_channels, | |
target_sample_rate=target_sample_rate, | |
mel_spec_type=mel_spec_type, | |
) | |
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."): | |
# Audio | |
ref_audio, ref_sr = torchaudio.load(prompt_wav) | |
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio))) | |
if ref_rms < target_rms: | |
ref_audio = ref_audio * target_rms / ref_rms | |
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue." | |
if ref_sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate) | |
ref_audio = resampler(ref_audio) | |
# Text | |
if len(prompt_text[-1].encode("utf-8")) == 1: | |
prompt_text = prompt_text + " " | |
text = [prompt_text + gt_text] | |
if tokenizer == "pinyin": | |
text_list = convert_char_to_pinyin(text, polyphone=polyphone) | |
else: | |
text_list = text | |
# Duration, mel frame length | |
ref_mel_len = ref_audio.shape[-1] // hop_length | |
if use_truth_duration: | |
gt_audio, gt_sr = torchaudio.load(gt_wav) | |
if gt_sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate) | |
gt_audio = resampler(gt_audio) | |
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed) | |
# # test vocoder resynthesis | |
# ref_audio = gt_audio | |
else: | |
ref_text_len = len(prompt_text.encode("utf-8")) | |
gen_text_len = len(gt_text.encode("utf-8")) | |
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed) | |
# to mel spectrogram | |
ref_mel = mel_spectrogram(ref_audio) | |
ref_mel = ref_mel.squeeze(0) | |
# deal with batch | |
assert infer_batch_size > 0, "infer_batch_size should be greater than 0." | |
assert ( | |
min_tokens <= total_mel_len <= max_tokens | |
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]." | |
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets) | |
utts[bucket_i].append(utt) | |
ref_rms_list[bucket_i].append(ref_rms) | |
ref_mels[bucket_i].append(ref_mel) | |
ref_mel_lens[bucket_i].append(ref_mel_len) | |
total_mel_lens[bucket_i].append(total_mel_len) | |
final_text_list[bucket_i].extend(text_list) | |
batch_accum[bucket_i] += total_mel_len | |
if batch_accum[bucket_i] >= infer_batch_size: | |
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}") | |
prompts_all.append( | |
( | |
utts[bucket_i], | |
ref_rms_list[bucket_i], | |
padded_mel_batch(ref_mels[bucket_i]), | |
ref_mel_lens[bucket_i], | |
total_mel_lens[bucket_i], | |
final_text_list[bucket_i], | |
) | |
) | |
batch_accum[bucket_i] = 0 | |
( | |
utts[bucket_i], | |
ref_rms_list[bucket_i], | |
ref_mels[bucket_i], | |
ref_mel_lens[bucket_i], | |
total_mel_lens[bucket_i], | |
final_text_list[bucket_i], | |
) = [], [], [], [], [], [] | |
# add residual | |
for bucket_i, bucket_frames in enumerate(batch_accum): | |
if bucket_frames > 0: | |
prompts_all.append( | |
( | |
utts[bucket_i], | |
ref_rms_list[bucket_i], | |
padded_mel_batch(ref_mels[bucket_i]), | |
ref_mel_lens[bucket_i], | |
total_mel_lens[bucket_i], | |
final_text_list[bucket_i], | |
) | |
) | |
# not only leave easy work for last workers | |
random.seed(666) | |
random.shuffle(prompts_all) | |
return prompts_all | |
# get wav_res_ref_text of seed-tts test metalst | |
# https://github.com/BytedanceSpeech/seed-tts-eval | |
def get_seed_tts_test(metalst, gen_wav_dir, gpus): | |
f = open(metalst) | |
lines = f.readlines() | |
f.close() | |
test_set_ = [] | |
for line in tqdm(lines): | |
if len(line.strip().split("|")) == 5: | |
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|") | |
elif len(line.strip().split("|")) == 4: | |
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|") | |
if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")): | |
continue | |
gen_wav = os.path.join(gen_wav_dir, utt + ".wav") | |
if not os.path.isabs(prompt_wav): | |
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav) | |
test_set_.append((gen_wav, prompt_wav, gt_text)) | |
num_jobs = len(gpus) | |
if num_jobs == 1: | |
return [(gpus[0], test_set_)] | |
wav_per_job = len(test_set_) // num_jobs + 1 | |
test_set = [] | |
for i in range(num_jobs): | |
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job])) | |
return test_set | |
# get librispeech test-clean cross sentence test | |
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False): | |
f = open(metalst) | |
lines = f.readlines() | |
f.close() | |
test_set_ = [] | |
for line in tqdm(lines): | |
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t") | |
if eval_ground_truth: | |
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-") | |
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac") | |
else: | |
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")): | |
raise FileNotFoundError(f"Generated wav not found: {gen_utt}") | |
gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav") | |
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-") | |
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac") | |
test_set_.append((gen_wav, ref_wav, gen_txt)) | |
num_jobs = len(gpus) | |
if num_jobs == 1: | |
return [(gpus[0], test_set_)] | |
wav_per_job = len(test_set_) // num_jobs + 1 | |
test_set = [] | |
for i in range(num_jobs): | |
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job])) | |
return test_set | |
# load asr model | |
def load_asr_model(lang, ckpt_dir=""): | |
if lang == "zh": | |
from funasr import AutoModel | |
model = AutoModel( | |
model=os.path.join(ckpt_dir, "paraformer-zh"), | |
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"), | |
# punc_model = os.path.join(ckpt_dir, "ct-punc"), | |
# spk_model = os.path.join(ckpt_dir, "cam++"), | |
disable_update=True, | |
) # following seed-tts setting | |
elif lang == "en": | |
from faster_whisper import WhisperModel | |
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir | |
model = WhisperModel(model_size, device="cuda", compute_type="float16") | |
return model | |
# WER Evaluation, the way Seed-TTS does | |
def run_asr_wer(args): | |
rank, lang, test_set, ckpt_dir = args | |
if lang == "zh": | |
import zhconv | |
torch.cuda.set_device(rank) | |
elif lang == "en": | |
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank) | |
else: | |
raise NotImplementedError( | |
"lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now." | |
) | |
asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir) | |
from zhon.hanzi import punctuation | |
punctuation_all = punctuation + string.punctuation | |
wer_results = [] | |
from jiwer import compute_measures | |
for gen_wav, prompt_wav, truth in tqdm(test_set): | |
if lang == "zh": | |
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True) | |
hypo = res[0]["text"] | |
hypo = zhconv.convert(hypo, "zh-cn") | |
elif lang == "en": | |
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en") | |
hypo = "" | |
for segment in segments: | |
hypo = hypo + " " + segment.text | |
raw_truth = truth | |
raw_hypo = hypo | |
for x in punctuation_all: | |
truth = truth.replace(x, "") | |
hypo = hypo.replace(x, "") | |
truth = truth.replace(" ", " ") | |
hypo = hypo.replace(" ", " ") | |
if lang == "zh": | |
truth = " ".join([x for x in truth]) | |
hypo = " ".join([x for x in hypo]) | |
elif lang == "en": | |
truth = truth.lower() | |
hypo = hypo.lower() | |
measures = compute_measures(truth, hypo) | |
wer = measures["wer"] | |
# ref_list = truth.split(" ") | |
# subs = measures["substitutions"] / len(ref_list) | |
# dele = measures["deletions"] / len(ref_list) | |
# inse = measures["insertions"] / len(ref_list) | |
wer_results.append( | |
{ | |
"wav": Path(gen_wav).stem, | |
"truth": raw_truth, | |
"hypo": raw_hypo, | |
"wer": wer, | |
} | |
) | |
return wer_results | |
# SIM Evaluation | |
def run_sim(args): | |
rank, test_set, ckpt_dir = args | |
device = f"cuda:{rank}" | |
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None) | |
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage) | |
model.load_state_dict(state_dict["model"], strict=False) | |
use_gpu = True if torch.cuda.is_available() else False | |
if use_gpu: | |
model = model.cuda(device) | |
model.eval() | |
sims = [] | |
for wav1, wav2, truth in tqdm(test_set): | |
wav1, sr1 = torchaudio.load(wav1) | |
wav2, sr2 = torchaudio.load(wav2) | |
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000) | |
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000) | |
wav1 = resample1(wav1) | |
wav2 = resample2(wav2) | |
if use_gpu: | |
wav1 = wav1.cuda(device) | |
wav2 = wav2.cuda(device) | |
with torch.no_grad(): | |
emb1 = model(wav1) | |
emb2 = model(wav2) | |
sim = F.cosine_similarity(emb1, emb2)[0].item() | |
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).") | |
sims.append(sim) | |
return sims | |