Spaces:
Building
on
Zero
Building
on
Zero
# just for speaker similarity evaluation, third-party code | |
# From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/ | |
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
""" Res2Conv1d + BatchNorm1d + ReLU | |
""" | |
class Res2Conv1dReluBn(nn.Module): | |
""" | |
in_channels == out_channels == channels | |
""" | |
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): | |
super().__init__() | |
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | |
self.scale = scale | |
self.width = channels // scale | |
self.nums = scale if scale == 1 else scale - 1 | |
self.convs = [] | |
self.bns = [] | |
for i in range(self.nums): | |
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) | |
self.bns.append(nn.BatchNorm1d(self.width)) | |
self.convs = nn.ModuleList(self.convs) | |
self.bns = nn.ModuleList(self.bns) | |
def forward(self, x): | |
out = [] | |
spx = torch.split(x, self.width, 1) | |
for i in range(self.nums): | |
if i == 0: | |
sp = spx[i] | |
else: | |
sp = sp + spx[i] | |
# Order: conv -> relu -> bn | |
sp = self.convs[i](sp) | |
sp = self.bns[i](F.relu(sp)) | |
out.append(sp) | |
if self.scale != 1: | |
out.append(spx[self.nums]) | |
out = torch.cat(out, dim=1) | |
return out | |
""" Conv1d + BatchNorm1d + ReLU | |
""" | |
class Conv1dReluBn(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): | |
super().__init__() | |
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) | |
self.bn = nn.BatchNorm1d(out_channels) | |
def forward(self, x): | |
return self.bn(F.relu(self.conv(x))) | |
""" The SE connection of 1D case. | |
""" | |
class SE_Connect(nn.Module): | |
def __init__(self, channels, se_bottleneck_dim=128): | |
super().__init__() | |
self.linear1 = nn.Linear(channels, se_bottleneck_dim) | |
self.linear2 = nn.Linear(se_bottleneck_dim, channels) | |
def forward(self, x): | |
out = x.mean(dim=2) | |
out = F.relu(self.linear1(out)) | |
out = torch.sigmoid(self.linear2(out)) | |
out = x * out.unsqueeze(2) | |
return out | |
""" SE-Res2Block of the ECAPA-TDNN architecture. | |
""" | |
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale): | |
# return nn.Sequential( | |
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0), | |
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale), | |
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0), | |
# SE_Connect(channels) | |
# ) | |
class SE_Res2Block(nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): | |
super().__init__() | |
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) | |
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) | |
self.shortcut = None | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv1d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
) | |
def forward(self, x): | |
residual = x | |
if self.shortcut: | |
residual = self.shortcut(x) | |
x = self.Conv1dReluBn1(x) | |
x = self.Res2Conv1dReluBn(x) | |
x = self.Conv1dReluBn2(x) | |
x = self.SE_Connect(x) | |
return x + residual | |
""" Attentive weighted mean and standard deviation pooling. | |
""" | |
class AttentiveStatsPool(nn.Module): | |
def __init__(self, in_dim, attention_channels=128, global_context_att=False): | |
super().__init__() | |
self.global_context_att = global_context_att | |
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. | |
if global_context_att: | |
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper | |
else: | |
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper | |
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper | |
def forward(self, x): | |
if self.global_context_att: | |
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) | |
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) | |
x_in = torch.cat((x, context_mean, context_std), dim=1) | |
else: | |
x_in = x | |
# DON'T use ReLU here! In experiments, I find ReLU hard to converge. | |
alpha = torch.tanh(self.linear1(x_in)) | |
# alpha = F.relu(self.linear1(x_in)) | |
alpha = torch.softmax(self.linear2(alpha), dim=2) | |
mean = torch.sum(alpha * x, dim=2) | |
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2 | |
std = torch.sqrt(residuals.clamp(min=1e-9)) | |
return torch.cat([mean, std], dim=1) | |
class ECAPA_TDNN(nn.Module): | |
def __init__( | |
self, | |
feat_dim=80, | |
channels=512, | |
emb_dim=192, | |
global_context_att=False, | |
feat_type="wavlm_large", | |
sr=16000, | |
feature_selection="hidden_states", | |
update_extract=False, | |
config_path=None, | |
): | |
super().__init__() | |
self.feat_type = feat_type | |
self.feature_selection = feature_selection | |
self.update_extract = update_extract | |
self.sr = sr | |
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True | |
try: | |
local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main") | |
self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path) | |
except: # noqa: E722 | |
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type) | |
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( | |
self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention" | |
): | |
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False | |
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr( | |
self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention" | |
): | |
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False | |
self.feat_num = self.get_feat_num() | |
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) | |
if feat_type != "fbank" and feat_type != "mfcc": | |
freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"] | |
for name, param in self.feature_extract.named_parameters(): | |
for freeze_val in freeze_list: | |
if freeze_val in name: | |
param.requires_grad = False | |
break | |
if not self.update_extract: | |
for param in self.feature_extract.parameters(): | |
param.requires_grad = False | |
self.instance_norm = nn.InstanceNorm1d(feat_dim) | |
# self.channels = [channels] * 4 + [channels * 3] | |
self.channels = [channels] * 4 + [1536] | |
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) | |
self.layer2 = SE_Res2Block( | |
self.channels[0], | |
self.channels[1], | |
kernel_size=3, | |
stride=1, | |
padding=2, | |
dilation=2, | |
scale=8, | |
se_bottleneck_dim=128, | |
) | |
self.layer3 = SE_Res2Block( | |
self.channels[1], | |
self.channels[2], | |
kernel_size=3, | |
stride=1, | |
padding=3, | |
dilation=3, | |
scale=8, | |
se_bottleneck_dim=128, | |
) | |
self.layer4 = SE_Res2Block( | |
self.channels[2], | |
self.channels[3], | |
kernel_size=3, | |
stride=1, | |
padding=4, | |
dilation=4, | |
scale=8, | |
se_bottleneck_dim=128, | |
) | |
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1) | |
cat_channels = channels * 3 | |
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) | |
self.pooling = AttentiveStatsPool( | |
self.channels[-1], attention_channels=128, global_context_att=global_context_att | |
) | |
self.bn = nn.BatchNorm1d(self.channels[-1] * 2) | |
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) | |
def get_feat_num(self): | |
self.feature_extract.eval() | |
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)] | |
with torch.no_grad(): | |
features = self.feature_extract(wav) | |
select_feature = features[self.feature_selection] | |
if isinstance(select_feature, (list, tuple)): | |
return len(select_feature) | |
else: | |
return 1 | |
def get_feat(self, x): | |
if self.update_extract: | |
x = self.feature_extract([sample for sample in x]) | |
else: | |
with torch.no_grad(): | |
if self.feat_type == "fbank" or self.feat_type == "mfcc": | |
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len | |
else: | |
x = self.feature_extract([sample for sample in x]) | |
if self.feat_type == "fbank": | |
x = x.log() | |
if self.feat_type != "fbank" and self.feat_type != "mfcc": | |
x = x[self.feature_selection] | |
if isinstance(x, (list, tuple)): | |
x = torch.stack(x, dim=0) | |
else: | |
x = x.unsqueeze(0) | |
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | |
x = (norm_weights * x).sum(dim=0) | |
x = torch.transpose(x, 1, 2) + 1e-6 | |
x = self.instance_norm(x) | |
return x | |
def forward(self, x): | |
x = self.get_feat(x) | |
out1 = self.layer1(x) | |
out2 = self.layer2(out1) | |
out3 = self.layer3(out2) | |
out4 = self.layer4(out3) | |
out = torch.cat([out2, out3, out4], dim=1) | |
out = F.relu(self.conv(out)) | |
out = self.bn(self.pooling(out)) | |
out = self.linear(out) | |
return out | |
def ECAPA_TDNN_SMALL( | |
feat_dim, | |
emb_dim=256, | |
feat_type="wavlm_large", | |
sr=16000, | |
feature_selection="hidden_states", | |
update_extract=False, | |
config_path=None, | |
): | |
return ECAPA_TDNN( | |
feat_dim=feat_dim, | |
channels=512, | |
emb_dim=emb_dim, | |
feat_type=feat_type, | |
sr=sr, | |
feature_selection=feature_selection, | |
update_extract=update_extract, | |
config_path=config_path, | |
) | |